
Jiang Li, Ph.D.
Department of Computer Science

CSCI 211
UNIX Lab

Shell Programming
Dr. Jiang Li

Jiang Li, Ph.D.
Department of Computer Science

Why Shell Scripting

• Saves a lot of typing
– A shell script can run many commands at once

– A shell script can repeatedly run commands

• Help avoid mistakes
– Once the script gets things right, it will always be right.

• Customize your job easily
– Arguments, variables and input/files can be used for

tailoring

A fast way to create some tools, utilities & apps

Jiang Li, Ph.D.
Department of Computer Science

Shell in Linux/UNIX

• What is a shell
– A user program provided as the interface between the users and the

OS

– When a user input a command, the shell is responsible for interpreting
and executing the command

• Different Shells

– BASH (Bourne-Again SHell) - Most common shell in Linux.

– CSH (C Shell)

– KSH (Korn Shell)

– TCSH

Jiang Li, Ph.D.
Department of Computer Science

Basic Ideas of Scripting

• Commands

– Those you normally run in command line

– A list of commands are executed one by one

• Control constructs

– Specify the way to execute enclosed commands

• Alternatively

• Repeatedly

4

Jiang Li, Ph.D.
Department of Computer Science

Get Started

• Type the following two commands

clear

echo "Hello, world!"

• Use vi to create a file "hewo.sh"

– Write the two commands in the file

– Save and exit

• Grant the permission to execute this file

– Run chmod +x hewo.sh

• Run the script by typing ./hewo.sh

Jiang Li, Ph.D.
Department of Computer Science

First Line and Comment

• #!/bin/bash

– As the first line, specify the shell that runs the
script (/bin/bash is the path of shell
command)

• Comments

– A word or line beginning with # causes that word
and all remaining characters on that line to be
ignored.

– A comment start with #

Jiang Li, Ph.D.
Department of Computer Science

Variable

• Assignment format

(assigning ‘value’ to variable ‘var’)

var=value

• To refer to the variable ‘var’ use the following:

$var

• Example script:

str1="My"

str2="variable"

var1="$str1 first $str2"

echo $var1, $str1 second $str2

No blank space!

Jiang Li, Ph.D.
Department of Computer Science

Quotes

• Compare the following
str1="My"

str2="variable"

var1='$str1 first $str2'

var2="$str1 first $str2"

echo $var1

echo $var2

• Escape quote
echo $var2\'s great.

8

Jiang Li, Ph.D.
Department of Computer Science

Capture Command Output

• var=`command`

– Example: var=`ls | wc –l`

• var=$(command)

– Example: var=$(ls | wc –l)

9

Arithmetic

• var=$((expression))

– Example: i=$((i * 2 – 1))

Jiang Li, Ph.D.
Department of Computer Science

Read User Input

• read var

• read –p "please enter: " var

• read –sp "please enter: " var

• Try each of the above then echo $var

10

Jiang Li, Ph.D.
Department of Computer Science

Command Line Arguments

• Values passed to the script from the invoking
command
– Example: myscript "a string" 123

• Represented by a dollar sign ($) followed by a
number from 0 to 9

– $0: the name of the script; $1: the first parameter; $2: the
second parameter; and so on

– Example: echo $1, $2

Jiang Li, Ph.D.
Department of Computer Science

Conditional Constructs

if [condition1]

then

command1

command2

command3

elif [condition2]

then

command4

command5

else

default-command

fi

if [condition1]; then

command1

command2

command3

elif [condition2]; then

command4

command5

else

default-command

fi

Jiang Li, Ph.D.
Department of Computer Science

Example Conditions
• [-e FILE]: True if file exists

• [-f FILE]: True if FILE exists and is a regular file.

• [-s FILE]: True if FILE exists and has a size greater than zero.

• [-d FILE]: True if FILE exists and is a directory.

• [-w FILE]: True if FILE exists and is writable

• [-x FILE]: True if FILE exists and is executable.

• [STRING1 == STRING2]: True if the two strings have the same values.

• [STRING1 != STRING2]: True if the strings are not equal.

• [STRING1 < STRING2]: True if "STRING1" sorts before "STRING2" with
lexicographic order.

• [STRING1 > STRING2]: True if "STRING1" sorts after "STRING2" with
lexicographic order.

• [NUMBER1 –eq NUMBER2]: True if Number1 is equal to Numbers

– Also -gt, -ge, -lt, -le

Jiang Li, Ph.D.
Department of Computer Science

And, Or, and Not in conditions

• And: -a

– Example:

if [$a == "a" –a $n –eq 1]; then …

• Or: -o

– Example:

if [$a == "a" –o $n –eq 1]; then …

• Not: !

– Example:

if [! $a == "a"]; then …

Jiang Li, Ph.D.
Department of Computer Science

The for Loop

for var in item1 item2 … itemN; do

command1

command2

....

commandN

done

Jiang Li, Ph.D.
Department of Computer Science

A for Example

• Create a script hewo.sh with the following content. Run it.

#!/bin/bash

for i in 1 2 3 4 5; do

echo "Welcome $i times."

done

$./hewo.sh

Welcome 1 times.

Welcome 2 times.

Welcome 3 times.

Welcome 4 times.

Welcome 5 times.

Jiang Li, Ph.D.
Department of Computer Science

A for Loop Handling Files

#!/bin/bash

for f in `ls`; do

if [-d $f]; then

echo "$f is a directory."

elif [-f $f]; then

echo "$f is a file."

else

echo "Don’t know what $f is.“

fi

done

Jiang Li, Ph.D.
Department of Computer Science

While Loop

• While loop executes as long as its condition
is true.

while [condition]

do

commands

done

Jiang Li, Ph.D.
Department of Computer Science

While Loop Example

#!/bin/bash

n=1

while [$n -le 5]; do

echo "Welcome $n times."

n=$((n+1))

done

Jiang Li, Ph.D.
Department of Computer Science

Read from Files

• while read var; do

echo var: $var

done < filename

• while read var1 var2; do

echo var1: $var1

echo var2: $var2

done < filename

20

Jiang Li, Ph.D.
Department of Computer Science

Functions

• What is function
– A function is a part of a script that performs a specific sub-

task and that can be called by its name

• Example

hello() {

echo "Hello world!"

}

hello

Jiang Li, Ph.D.
Department of Computer Science

Parameters

• Same as command line arguments

• Parameters are represented by a dollar sign ($)
followed by a number from 0 to 9

– $0: the name of the script; $1: the first parameter; $2: the
second parameter; and so on

– Example:
hello() {

echo "Hello $1 $2, let us be friend."

}

hello John Smith

