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Chapter 1

Basic Simulation Modeling

Based on the slides provided with the textbook
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1.1 The Nature of Simulation (1)

• Simulation

– Using computers to imitate (simulate) the 
operations of a real-world facility or process (the 
system)

• Model

– Mathematical or logical representation of system 
behavior, possibly with approximation

– If simple enough, get analytic solution

– Otherwise, use simulation to get data for estimation

• Model is evaluated numerically in a simulation
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• Know the results without really doing it

– Saves the cost

• Simulation is one of the most widely used 
operations-research and management-science 
techniques

– Along with "math-programming" and "statistics"

– Numerous application areas

• Manufacturing, computer networking, military 
operations, transportation, business processes and 
much more

3

Importance of Simulation



Jiang Li, Ph.D.
Department of Computer Science

• Models to study large-scale systems tend to be 
complex and leads to complex computer programs

– Eased by simulation packages

• Simulation of complex systems takes a lot of 
computer time

– Eased by computer technology advancement

• Ignorance of simulation methodology

– Need to compose efficient models, careful programming, 
proper data collection and result analysis

– An integral part of this course
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1.2 Systems, Models, and 
Simulation

• System

– A collection of (interacting) entities

• Each characterized by attributes

– Could be a part of an overall system in the real 
world, depending on the study

• System state

– The value of variables to describe a system at a 
particular time

5



Jiang Li, Ph.D.
Department of Computer Science

Types of Systems

• Discrete

– State variables change at separated points in time

– E.g. a store (with the # customers as state variable)

• Continuous

– State variables change continuously with time

– E.g. a moving vehicle (with the position as state variable)

• Very few systems in practice are purely of one type, 
but one type of changes usually dominates
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Ways to Study A System
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Ways to Study A System (1)

• Experiment with the actual system vs. 
Experiment with a model of the system

– First one preferred, if cost-effective

– Usually it is not, or the system doesn't even exist

– Model validity: does the model accurately reflects 
the system
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Ways to Study A System (2)

• Physical (iconic) model vs. mathematical 
model

– A mathematical model good for one purpose may 
not be good for others, e.g. d = rt

• Analytical solution vs. simulation

– First one desirable if feasible

– Simulation is needed in most situations
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Simulation Models (1)

• Static vs. dynamic

– Static: time is not a factor

– Dynamic: the system evolves over time

• Deterministic vs. stochastic

– Deterministic: output is decided once input is given

– Stochastic: some components involves randomness

• Only provides estimate

• Must be treated carefully, e.g. one run does not tell 
much
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Simulation Models (2)

• Continuous vs. discrete

– A discrete model may be used to model a 
continuous system
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1.3 Discrete-Event Simulation

• Event

– An instantaneous occurrence that may change the 
system’s state

– Some may be used to schedule decisions

• Simulation clock

– Variable that gives the current value of simulated 
time (not wall clock time)

– Methods for advancing the simulation clock

• Next-event time advance (used the most)

• Fixed-increment time advance
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Time-Advance Mechanisms

• Next-event time advance

– Clock initialized to zero

– Times of events are determined

– Clock advanced to time of first event
• State of system updated

– Clock advanced to time of next event
• State of system updated

– Continues until stopping condition satisfied

– Inactivity periods (of various length) are skipped

• Fixed-increment time advance

– Does not skip over inactive periods
• Can use up a lot of computer time
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Next-Event Time-Advance Example (1)

• Single-server queueing system

– ti: arrival time of the ith customer (t0 = 0)

– Ai = ti – ti-1

– Si: Time to serve the ith customer

– Di: Delay in queue of the ith customer

– ci = ti + Di + Si

– ei: occurrence time of ith event of any type
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Next-Event Time-Advance Example (2)

• Known probability distribution for inter-arrival 
time and service time

– Cumulative distribution functions known

• FA: CDF of inter-arrival time

• FS: CDF of service time

• Generate A1 from FA and get t1

– e1 = t1

• Generate S1 from FS and get S1

• Generate A2 from FA and get t2

• e2 = ?
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Components of a Discrete-Event 
Simulation Program

• System state

– Lists of entity records

• Simulation clock

• Event list

• Statistical counters

• Routines

– Initialization, timing, event, library, report 
generator, main
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1.4 Simulation of a Single-Server 
Queuing System

• Example system: a one-operator 
barbershop

– Interarrival times A1, A2…An are independent, 
identically distributed random variables

– Customer service times are S1, S2…

– FIFO

– Measure the performance by looking at the 
estimates of three quantities 

• Expected average delay of customers in queue

• Expected average number of customers in queue

• Expected utilization of the server
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Estimate Average Queueing Delay

• መ𝑑 𝑛 =
σ𝑖=1
𝑛 𝐷𝑖

𝑛

• D1 = 0, Di >= 0 (i > 1)

• መ𝑑 𝑛 is an estimator based on size-1 sample
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Estimate Average Queue Length

• 𝑞 𝑛 = σ𝑖=1
∞ 𝑖 𝑝𝑖

– pi: probability of the queue length Q(t) being i, or, 
the proportion of the time Q(t) = i

• ො𝑞 𝑛 = σ𝑖=1
∞ 𝑖 ෝ𝑝𝑖

• ො𝑞 𝑛 =
σ𝑖=1
∞ 𝑖𝑇𝑖

𝑇(𝑛)
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Example Realization 
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Estimate Average Queue Length

• T0 = (1.6 – 0.0) + (4.0 – 3.1) + (5.6 – 4.9) = 3.2

• T1, T2, T3?

• ො𝑞 𝑛 =
σ𝑖=1
∞ 𝑖𝑇𝑖

𝑇(𝑛)
= ?

• ො𝑞 𝑛 =
0׬
𝑇(𝑛)

𝑄 𝑡 𝑑𝑡

𝑇(𝑛)
(preferable)
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Estimate Server Utilization

• B(t)=ቊ
1 if the server is busy at time t
0 if the server is idle at time t

• ො𝑢 𝑛 =
0׬
𝑇(𝑛)

𝐵(𝑡)𝑑𝑡

𝑇(𝑛)

23



Jiang Li, Ph.D.
Department of Computer Science

Example Realization 
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ො𝑢 𝑛 =
0׬
𝑇(𝑛)

𝐵(𝑡)𝑑𝑡
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Recap of Performance Measure

• Discrete-time statistic

– መ𝑑 𝑛 =
σ𝑖=1
𝑛 𝐷𝑖

𝑛

– Another example: Max. delay

• Continuous-time statistic

– ො𝑞 𝑛 =
0׬
𝑇(𝑛)

𝑄 𝑡 𝑑𝑡

𝑇(𝑛)

– ො𝑢 𝑛 =
0׬
𝑇(𝑛)

𝐵(𝑡)𝑑𝑡

𝑇(𝑛)

– Another example: proportion of time with 5 
customers in queue
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Events and State Variables

• Events for the barbershop example

– Arrival of a customer

– Departure of a customer

• State variables

– Status of the server

– Number of customers in the queue

– Arrival time of each customer currently in queue

– Time of most recent event
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Simulation of a Single-Server 
Queuing System

• Initialization

– State of the system at t = 0

• Sequence of events

– t = 0.4 arrival of customer 1

– t = 1.6 arrival of customer 2

– t = 2.1 arrival of customer 3

– t = 2.4 departure of customer 1

– Time units must be the same
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Figure 1.7 (a-b) Snapshots of the system and its 

computer representation at times t=0 and t=0.4
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Figure 1.7 (c-d) Snapshots of the system and its 

computer representation at times t=1.6 and t=2.1
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Figure 1.7 (e & n) Snapshots of the system and its 

computer representation at times t=2.4 and t=8.6
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Writing a simulation program

• Our example: C, a general purpose language

– Know every detail

– Some simulations (modules) have to be written in 
GPL

• Program modules

– Initialization

– Timing

– Arrive

– Depart

– Report
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Flowchart for 

arrival routine
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Flowchart for 

departure 

routine
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Generate Random Variates from 
An Exponential Distribution

• 𝑓 𝑥 =
1

𝛽
𝑒−𝑥/𝛽 (x >= 0)

• 𝐹 𝑥 = 0׬
𝑥 1

𝛽
𝑒−𝑥/𝛽𝑑𝑥 = 1 − 𝑒−𝑥/𝛽

• Pick U from (0,1), get −𝛽 ln𝑈

• 𝑃 −𝛽 ln𝑈 ≤ 𝑥 = 𝐹(𝑥)
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Simulation Code

35

Figure 1.10 C code for the external definitions, queuing model
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Figure 1.11 C code for the main function, queuing model (continues)
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Figure 1.11 C code for the main function, queuing model (cont’d.)
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Figure 1.12 C code for function initialize, queuing model
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Figure 1.13 C code for function timing, queuing model
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Simulation Output Discussion

• Numbers will vary each time the simulation is run
– Not explicit answers but estimates of quantities

• Results are functions of the input parameters, and the way 
system is initialized

• Might want to study steady state characteristics of the system
– The characteristics after running for an infinite amount of time (in 

theory)

– How long is long enough?

– More in Ch. 9

• Alternative stopping rules could have been defined
– E.g. using simulation time. Schedule an end-simulation event. 

– Pay attention to partial service, e.g. when a shop closes at 5PM.
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Event Graph
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Event Graph
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1.5 Simulation of an Inventory 
System

• Problem: compare various ordering policies 
for an inventory system

– Given: initial inventory level, demands, times 
between demands

– Costs: setup cost, incremental cost, holding and 
shortage costs

– State variables: inventory level, amount of an 
outstanding order from company to supplier, and 
time of last event
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Event Graphs of An Inventory System
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Figure 1.29 Event graph, inventory model
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Event Processing 
Flow Charts
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1.6 Parallel/Distributed Simulation 
and the High Level Architecture

• Parallel-discrete event simulation

– Execution of the simulation using multiple 
processors

– Reduces execution time

– Done by dividing model into several logical 
processes (LPs)

– Critical issue: determining LPs happen in proper 
sequence
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Parallel/Distributed Simulation and 
the High Level Architecture

• Types of synchronization in parallel simulation

– Conservative

• Avoid any violations of local causality constraint

– Optimistic

• Time-warp mechanism: best known optimistic 
approach

• At the cost of more memory and wasted computation

• Still has limits

• Distributed simulation

– High level architecture (HLA) federation
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Functional View of An HLA Federation

• HLA

– The interface specification between RTI and federates

– The object model template
• Descriptions of essential shared elements of the federation

– The rules
• Key underlying principles
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1.7 Steps in a Sound Simulation Study

• Formulate the problem and plan the study

• Collect data and define a model

• Ensure the assumptions are valid

• Construct a computer program and verify

• Make the pilot runs

• Is the programmed model valid?

• Design the experiments
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Steps in a Sound Simulation Study

• Make the production runs

• Analyze the output data

• Document, present, and use the results
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1.8 Advantages, Disadvantages, 
and Pitfalls of Simulation

• Most complex, real-world systems cannot be 
accurately described by an analytical 
mathematical model

– Numerical simulation is the only investigation 
possible

• Simulation allow for the:

– Evaluation of alternative designs

– Study of a system with a long time frame
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Advantages, Disadvantages, and 
Pitfalls of Simulation

• Can only estimate

– Less preferable than analytical study (if feasible)

• Simulation models can be expensive and time-
consuming to develop

• Large amounts of data can lead to “overconfidence” in 
the result

• What are some causes of failure?

– Lack of well-defined objectives

– Inappropriate level of detail in the model

• Crucial to involve the right people in the simulation 
study
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