Chapter 2

HOWARD Based on the slides provided with the textbook Jiang Li, Ph.D.
& UNIVERSITY Department of Computer Science

2.1 Introduction

* List processing

— An activity that takes place in most simulations
* simlib

— A group of ANSI-standard C support functions

* Includes common simulation activities

— Complete source code can be downloaded from
www.mhhe.com/law

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

2.2 List Processing in Simulation

 Examples in chapter 1 contained either one or
no lists of records

— Other than the event list
— Always processed as first-in, first-out (FIFO)

 Most complex simulations require many lists

— May not be processed in a FIFO manner

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Approaches to Storing Lists

* Sequential-allocation
— Records are stored in physically adjacent memory
— Relatively simple
— First element may be at fixed or dynamic index

— How to prepend, append, insert, delete?
* Could be time-expensive

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Approaches to Storing Lists (cont'd)

 Linked-allocation

— Each record contains pointers that specify its
logical relationship to other records in the list

— Singly linked
* Successor (forward) link
* Head pointer

— Doubly linked

e Successor (forward) link
* Predecessor (backward) link
* Head pointer
* Tail pointer
2 HOWARD i 6, [

M UNIVERSITY Department of Computer Science

Approaches to Storing Lists (cont'd)

* Linked-allocation
— Allocate memory with OS-provided API

— Allocate memory from a self-maintained array
* Use index instead of pointers
* Maintain a List of available space

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Copyright © McGraw-Hill Education. Permission required for reproduction or display.
List List of available space List List of available space

0 Head Head

Head
Physical /
Physical row

row 5
4

Tail Tail/A 2
HOWARD Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Copyright © McGraw-Hill Education. Permission required for reproduction or display.

List List of available space List List of available space

Head 0

Head Head
Physical /
row i Physical

5 row

2

G

4 402
Tail Tail

HOWARD Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

o
)

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Event list List of available space Event list List of available space

0
Head Head

Head Head l

.
.
.

Physical
row . 0

4

1\

120

.
ARE

Tail Tail

@)
wn]

HOWARD Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

2.3 A Simple Simulation

Language (Lib): simlib

e C-based

* Imple

ments linked storage allocation

— Provides 25 lists (25t reserved for events)

— Eac

* |Includ

n list element has up to 10 float attributes

es 19 functions

— Eac

n designed to perform a frequently-occurring

simulation activity

£ HOWARD
M UNIVERSITY

Jiang Li, Ph.D.
Department of Computer Science

Functions in simlib (1)

* init_simlib()

* |list _file(option, list_index)
— Insert a record (in predefined transfer[]) into list
— option: FIRST,LAST,INCREASING,DECREASING

* list remove(option, list_index)
— option: FIRST,LAST

e timing()
— Update sim_time to next event

— Maintain event list
i HO\VAR[) 11 Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Functions in simlib (2)

* event schedule(event_time, event_type)
e event_cancel(event_ type)

— Cancel the first event of event_type

e sampst(value,var_index)
— 20 sampst variables

— Provide mean/num. of values/max/min when
called with negative var_index

i HO\VAR[) 12 Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Functions in simlib (3)

e timest(value,var_index)
— 20 timest variables

— Provide time avg./max/min when called with
negative var_index

* filest(list_index)
— Provide time-avg./max/min number of records in list
e out _sampst(file,low_var_index, high_var_index)

— Write summary statistics to file for sampst variables
from low index to high index

i HO\VAR[) 13 Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Functions in simlib (4)

e out_timest(file,low_var_index, high _var_index)
e out_ filest(file,low_list_index,high_list_index)
e expon(mean,stream)

— stream: select a stream of random numbers, use two
different streams for different sets of random values
(e.g. inter-arrival time and service time)

 random_integer(prob_dist[], stream)
— Specify cumulative probability of 1 ~ 25 in prob_dist(]

* uniform(a,b,stream)
2 HOWARD " Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Functions in simlib (5)

e erlang(m,mean,stream)
* |cgrand(stream)

— Return a uniformly distributed r.v. in [0, 1]

* |cgrandst(random_seed, stream)

— Sets random seed for stream

* |cgrandgt(stream)

— Get the next random underlying integer in stream

i HO\VAR[) 15 Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

2.4 Single-Server Queuing
Simulation with simlib

* |dentify the events
— Arrival: type 1 event

— Departure: type 2 event

e Define the simlib lists and the attributes in
their records

List Attribute 1 Attribute 2
I, queue Time of arrival to queue —
2. server — —
235, event list Event time Event type
£ HOWARD Jiang Li, Ph.D.

2 UNIVERSITY Department of Computer Science

Single-Server Queuing Simulation
with simlib

* |dentify all sampst and timest variables used

sampst variable number Meaning

] Delays in queue

* |dentify separate random number streams for
interarrival times and service times

Stream Purpose
I Interarrival times
2 Service times
£ HOWARD Jiang Li, Ph.D.

2 UNIVERSITY Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
/* External definitions for single-server queueing system using simlib. */

#include "simlib.h" /* Required for use of simlib.c. */

#define EVENT ARRIVAL
#define EVENT DEPARTURE
#define LIST QUEUE

#define LIST SERVER

#define SAMPST DELAYS
#define STREAM INTERARRIVAL
#define STREAM_ SERVICE

/* Event type for arrival. */

/* Event type for departure. */

/* List number for queue. */

/* List number for server. */

/* sampst variable for delays in queue. */

/* Random-number stream for interarrivals. */
/* Random-number stream for service times. */

R RPN

/* Declare non-simlib global variables. */

int num_custs_delayed, num_delays_required;
float mean_interarrival, mean_service;
FILE *infile, *outfile;

/* Declare non-simlib functions. */

void init_model (void);
void arrive(void);
void depart (void);
void report(void);

HOWARD Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

opyrigl cGraw- ucation. Permission required for reproduction or display.

ain() /* Main function. */

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

void init_model(void) /* Initialization function.
num_custs_delayed = 0;

event_schedule(sim_time + expon(mean_ interarrival, STREAM INTERARRIVAL),
EVENT_ARRIVAL);

HOWARD
UNIVERSITY

/* Open input and output files. */

infile = fopen("mmlsmlb.in", "r");
outfile = fopen("mmlsmlb.out", "w");

/* Read input parameters. */

fscanf(infile, "%f %f %d", &mean_interarrival, &mean_service,
&num_delays_required) ;

/* Write report heading and input parameters. */
fprintf(outfile, "Single-server queueing system using simlib\n\n");
fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
mean_interarrival);
fprintf (outfile, "Mean service time%16.3f minutes\n\n", mean_service);
fprintf(outfile, "Number of customers%l4d\n\n\n", num_delays_required)
/* Initialize simlib */
init_simlib();
/* Set maxatr = max(maximum number of attributes per record, 4) */
maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */
/* Initialize the model. */
init_model();
/* Run the simulation while more delays are still needed. */
while (num_custs_delayed < num_delays_required) {
/* Determine the next event. */
timing();
/* Invoke the appropriate event function. */
switch (next_event_type) {
case EVENT_ARRIVAL:
arrive();
break;
case EVENT_DEPARTURE:
depart():
break;
}
/* Invoke the report generator and end the simulation. */

report();

fclose(infile);
fclose(outfile);

return 0;

T

HOWARD
UNIVERSITY

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

void arrive(void) /* Arrival event function. */

{

}

/* Schedule next arrival. */

event_schedule(sim_time + expon(mean_ interarrival, STREAM INTERARRIVAL),

EVENT_ARRIVAL) ;

/* Check to see whether server is busy (i.e., list SERVER contains a
record). */

if (list_size[LIST_SERVER] == 1) {

/* Server is busy, so store time of arrival of arriving customer at end
of list LIST_QUEUE. */

transfer[l] = sim_time;
list_file(LAST, LIST QUEUE);
}

else {

/* Server is idle, so start service on arriving customer, who has a
delay of zero. (The following statement IS necessary here.) */

sampst (0.0, SAMPST DELAYS);

/* Increment the number of customers delayed. */

++num_custs_delayed;

/* Make server busy by filing a dummy record in list LIST_SERVER. */

list_file(FIRST, LIST SERVER);

/* Schedule a departure (service completion). */

event_schedule(sim_time + expon(mean service, STREAM_SERVICE),
EVENT_DEPARTURE) ;

} Jiang Li, Ph.D.
Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
void depart(void) /* Departure event function. */
{

/* Check to see whether queue is empty. */

if (list_size[LIST_QUEUE] == 0)

/* The queue is empty, so make the server idle and leave the departure
(service completion) event out of the event list. (It is currently
not in the event list, having just been removed by timing before

coming here.) */

list_remove (FIRST, LIST SERVER);

else {

/* The queue is nonempty, so remove the first customer from the queue,
register delay, increment the number of customers delayed, and
schedule departure. */

list_remove (FIRST, LIST QUEUE);

sampst (sim_time - transfer[l], SAMPST DELAYS);

++num_custs_delayed;

event_schedule(sim time + expon(mean_service, STREAM SERVICE),
EVENT_ DEPARTURE) ;

}
}
void report(void) /* Report generator function. */
{
/* Get and write out estimates of desired measures of performance. */
fprintf (outfile, "\nDelays in queue, in minutes:\n");
out_sampst (outfile, SAMPST DELAYS, SAMPST DELAYS);
fprintf(outfile, "\nQueue length (1) and server utilization (2):\n");
out_filest(outfile, LIST QUEUE, LIST SERVER);
fprintf (outfile, "\nTime simulation ended:%12.3f minutes\n", sim_time);
HOWARD Jiang Li, Ph.D.

UNIVERSITY Department of Computer Science

T

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
Single-server queueing system using simlib

Mean interarrival time 1.000 minutes
Mean service time 0.500 minutes

Number of customers 1000

Delays in queue, in minutes:

SAMPST Number
variable of
number Average values Maximum Minimum

1 0.5248728E+00 0.1000000E+04 0.5633087E+01 0.0000000E+00

Queue length (1) and server utilization (2):

File Time
number average Maximum Minimum
1 0.5400774E+00 0.8000000E+01 0.0000000E+00
2 0.5106925E+00 0.1000000E+01 0.0000000E+00
HOWARD Time simulation ended: 971.847 minutes Jiang Li, Ph.D,

& UNIVERSITY Department of Computer Science

23

Single-Server Queuing Simulation
with simlib
* Output is different from the output obtained

for the same system in Chapter 1

— Average delay in queue changed by over 20
percent

e Reason: now using dedicated random number stream

— Both programs are correct

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

24

2.5 Time-Shared Computer Model

e Simulate a model of a time-shared computer facility
— Single CPU with n terminals

— Operators send jobs to CPU from terminal after thinking
* No more than one outstanding job per terminal

— Arriving jobs join a single queue
— Jobs are served in a round-robin manner
* Not FIFO
 Want to know how many terminals can a system
have while keeping average response time <= 30
seconds.

— Also estimate average amount of jobs in queue, CPU

utilization
i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

End
simulation

Arrival

HOWARD 55 Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

Event description

Event type

Arrival of a job to the CPU from a terminal, at the end of a think time

End of a CPU run, when a job either completes its service requirement
or has received the maximum processing quantum g

End of the simulation

e Lists of records

HOWARD
B UNIVERSITY

ist Attribute 1 Attribute 2

1, queue Time of arrival of Remaining service time
job to computer

2, CPU Time of arrival of

25, event list

job to computer

Event time

Remaining service time after the present CPU pass

(negative if the present CPU pass is the last one needed

for this job)
Event type

Jiang Li, Ph.D.
Department of Computer Science

27

Time-Shared Computer Model

e One discrete-time statistic of interest

— Response times

sampst variable number Meaning

1 Response times

* Two types of random variables

Stream Purpose
1 Think times
2 Service times
£ HOWARD Jiang Li, Ph.D.

2 UNIVERSITY Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
/* External definitions for time-shared computer model. */

#include "simlib.h" /* Required for use of simlib.c. */

/* Event type for arrival of job to CPU. */
/* Event type for end of a CPU run. */

/* Event type for end of the simulation. */
/* List number for CPU queue. */

/* List number for CPU. */

/* sampst variable for response times. */

/* Random-number stream for think times. */
/* Random-number stream for service times. */

#define EVENT ARRIVAL

#define EVENT_END CPU_RUN
#define EVENT_END_ SIMULATION
#define LIST QUEUE

#define LIST CPU

#define SAMPST RESPONSE_TIMES
#define STREAM THINK

#define STREAM_ SERVICE

NRFRPFRPNMNRWNDRE

/* Declare non-simlib global variables. */

int min terms, max _terms, incr_terms, num terms, num_ responses,
num_responses_required, term;

float mean_think, mean_service, quantum, swap;

FILE *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(void);

void start_ CPU_run(void);
void end_CPU_run(void);
void report(void);

HOWARD Jiang Li, Ph.D.

& UNIVERSITY Department of Computer Science

main()

{

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
/* Main function. */

/* Open input and output files. */

infile
outfile

fopen("tscomp.in",
fopen("tscomp.out",

npn) ;
"W");

/* Read input parameters. */

fscanf (infile, "%d %d %d %d %f %f %f %f",
&min_terms, &max_terms, &incr terms, &num responses_required,
&mean_think, &mean service, &quantum, &swap);

/* Write report heading and input parameters. */
fprintf (outfile, "Time-shared computer model\n\n");

fprintf(outfile, "Number of terminals%9d to%4d by %4d\n\n",
min_terms, max_terms, incr_terms);

fprintf(outfile, "Mean think time %11.3f seconds\n\n", mean_think);

fprintf (outfile, "Mean service time%11.3f seconds\n\n", mean_service);

fprintf (outfile, "Quantum %11.3f seconds\n\n", quantum);

fprintf (outfile, "Swap time %11.3f seconds\n\n", swap);

fprintf (outfile, "Number of jobs processed%12d\n\n\n",
num_responses_required) ;

fprintf (outfile, "Number of Average Average");

fprintf (outfile, " Utilization\n");

fprintf (outfile, "terminals response time number in queue of CpPU");

/* Run the simulation varying the number of terminals. */

for (num_terms = min_terms; num_terms <= max_terms;
num_terms += incr_terms) {

/* Initialize simlib */

nit_simlib();

[8

/* Set maxatr = max(maximum number of attributes per record, 4) */

maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */

HOWARD
UNIVERSITY

/* Initialize the non-simlib statistical counter. */

num_responses = 0;
/* Schedule the first arrival to the CPU from each terminal. */

for (term = 1; term <= num terms; ++term)
event_schedule (expon(mean_think, STREAM_THINK), EVENT_ARRIVAL);

/* Run the simulation until it terminates after an end-simulation event
(type EVENT_END_ SIMULATION) occurs. */

do {
/* Determine the next event. */
timing();
/* Invoke the appropriate event function. */

switch (next_event_type) {
case EVENT_ ARRIVAL:
arrive();
break;

case EVENT_END_CPU_RUN:
end_CPU_run();
break;
case EVENT_END_SIMULATION:
report();
break;
}

/* If the event just executed was not the end-simulation event (type
EVENT_END_SIMULATION), continue simulating. Otherwise, end the
simulation. */

} while (next_event type != EVENT END_SIMULATION) ;
}

fclose(infile);
fclose(outfile);

return 0;

Jiang Li, Ph.D.
Department of Computer Science

jucation. Permission required for reproduction or display.

Function
arrive

Y

Compute job's attributes
and place in queue

Y No
Invoke start_ CPU_run

_Y

Return

HOWARD
UNIVERSITY

T

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

void arrive(void) /* Event function for arrival of job at CPU after think

{

time. */

/* Place the arriving job at the end of the CPU queue.
Note that the following attributes are stored for each job record:
1. Time of arrival to the computer.
2. The (remaining) CPU service time required (here equal to the
total service time since the job is just arriving). */

transfer[1] sim time;
transfer[2] expon(mean_service, STREAM_SERVICE);
list file(LAST, LIST QUEUE);

/* If the CPU is idle, start a CPU run. */

if (list_size[LIST CPU] == 0)
start_CPU_run();

Jiang Li, Ph.D.
Department of Computer Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Function Copyright © McGraw-Hill Education. Permission required for reproduction or display.
start. CPU_run void start_CPU_run(void) /* Non-event function to start a CPU run of a job. */
{

float run_ time;

Y

/* Remove the first job from the queue. */
Remove job from queue

and compute CPU time list_remove(FIRST, LIST QUEUE);

/* Determine the CPU time for this pass, including the swap time. */

Y

if (quantum < transfer[2])
run_time = quantum + swap;

Decrement this job’s alse
remaining service time run_time = transfer([2] + swap;

/* Decrement remaining CPU time by a full quantum. (If less than a full

Y quantum is needed, this attribute becomes negative. This indicates that
the job, after exiting the CPU for the current pass, will be done and is
to be sent back to its terminal.) */

Place job in CPU
transfer[2] -= quantum;
v /* Place the job into the CPU. */
Schedule an list_file(FIRST, LIST_CPU);
end.-C.PU-run eyent /* Schedule the end of the CPU run. */
for this job on this pass
event_schedule(sim_time + run_time, EVENT_END_CPU_RUN) ;
Y }
Return
HOWARD Jiang Li, Ph.D.

UNIVERSITY Department of Computer Science

T

A

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Function
end_CPU_run

Remove job from CPU

job require more
CPU time?

Place job at end
of queue

!

Compute response time
of job and gather
statistics

Invoke
start_CPU_run

'

Schedule an arrival event
for the terminal of
this job

!

Add 1 to the number
of jobs processed

Schedule an Yes
end-simulation event

immediately

Are
enough jobs
done?

there any jobs in
the queue?

Invoke
start_CPU_run

!

T

HOWARD
UNIVERSITY

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
void end CPU_run(void) /* Event function to end a CPU run of a job. */
{ /* Remove the job from the CPU. */

list_remove (FIRST, LIST_CPU);

/* Check to see whether this job requires more CPU time. */

if (transfer[2] > 0.0) {

/* This job requires more CPU time, so place it at the end of the queue
and start the first job in the queue. */

list_file(LAST, LIST QUEUE);
start_CPU_run();

}
else {

/* This job is finished, so collect response-time statistics and send it
back to its terminal, i.e., schedule another arrival from the same
terminal. */

sampst (sim_time - transfer([l], SAMPST RESPONSE_TIMES);

event_schedule(sim_time + expon(mean_ think, STREAM THINK),

EVENT_ARRIVAL);

/* Increment the number of completed jobs. */

++0Uum_responses;

/* Check to see whether enough jobs are done. */

if (num_responses >= num responses_required)

/* Enough jobs are done, so schedule the end of the simulation
immediately (forcing it to the head of the event list). */
event_schedule(sim_time, EVENT_END_ SIMULATION) ;

else

/* Not enough jobs are done; if the queue is not empty, start
another job. */
if (list_size[LIST QUEUE] > 0)
start_CPU_run();
}

33

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
void report(void) /* Report generator function. */

{
/* Get and write out estimates of desired measures of performance. */
fprintf(outfile, "\n\n%5d%16.3£%16.3f%16.3f", num terms,
sampst (0.0, -SAMPST RESPONSE_TIMES), filest (LIST QUEUE),
filest (LIST CPU));
}

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
Time-shared computer model

Ti m e-Sh a red Number of terminals 10 to 80 by 10

Mean think time 25.000 seconds

Computer Model .. oo secome

* Output

— Congestion worsens as

Quantum 0.100 seconds
Swap time 0.015 seconds
Number of jobs processed 1000
Number of Average Average Utilization

number Of termlna|S rlses terminals response time number in queue of CPU

10 1.324 0.156 0.358
— System could handle

20 2.165 0.929 0.658
about 60 terminals 30 5.505 4.453 0.914
* Response time degrades to 40 12.698 12.904 0.998
30 seconds at that point 50 24.593 23.871 0.998
60 31.712 32.958 1.000
70 42.310 42.666 0.999

2t HOWARD
B UNIVERSITY 80 47.547 51.158 1.000

34

2.8 Efficient Event-List
Management

* For complex systems with a large number of
events

— Much of the computer time is used on event-list
processing

* One solution: use more efficient data
structure and search technique
— Median-pointer linked list

— Other approaches
* Heaps and trees, calendar or ladder queues, etc.

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science

