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Chapter 4

Review of Basic Probability and 
Statistics

Based on the slides provided with the textbook
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4.1 Introduction

• Use of probability and statistics

– Integral part of a simulation study

– Every modeling team should include at least one 
thoroughly trained person

– Understanding how to model a probabilistic 
system and validate the model

– Needed to choose input probability distributions 
and generate random samples

– Required to analyze output data
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4.2 Random Variables and Their 
Properties

• Experiment

– Process whose outcome is not known with 
certainty

• Sample space, S

– Set of all possible outcomes, called sample points

• Example: Experiment consisting of flipping a 
coin

𝑆 = {𝐻, 𝑇}
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Random Variables and Their 
Properties

• P(X ≤ x)

– Probability associated with the event {X ≤ x}

• Discrete random variables

– Can take on a countable number of values

• Continuous random variables

– Can take on an uncountably infinite number of 
different values
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Discrete Random Variables

5

Probability mass function
p 𝑥𝑖 = 𝑃 𝑋 = 𝑥𝑖 for i=1,2,….

𝑃 𝑋 ∈ 𝐼 = σ𝑎≤𝑥≤𝑏 p 𝑥𝑖 for I = [a,b]

Cumulative distribution function
F 𝑥 = 𝑃 𝑋 ≤ 𝑥 for −∞ < 𝑥 < ∞
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Continuous Random Variables
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Probability Mass function
𝑃 𝑋 = 𝑥 = 0

𝑃 𝑋 ∈ 𝐵 = 𝐵׬ 𝑓 𝑥 𝑑𝑥 f(x):Probability density function

𝑃 𝑋 ∈ [𝑥, 𝑥 + ∆𝑥] = 𝑥׬
𝑥+∆𝑥

𝑓 𝑦 𝑑𝑦 for I = [a,b]
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Continuous Random Variables

7

Cumulative Distribution function

F 𝑥 = 𝑃 𝑋 ≤ 𝑥 =න
−∞

𝑥

𝑓 𝑦 𝑑𝑦 for −∞ < 𝑥 < ∞

𝑓 𝑥 = 𝐹′(𝑥)

𝑃 𝑋 ∈ 𝐼 = 𝑎׬
𝑏
𝑓 𝑦 𝑑𝑦 = F b − F(a) for I = [a,b]

𝑃 𝑋 ∈ [𝑥, 𝑥 + ∆𝑥] =?



Jiang Li, Ph.D.
Department of Computer Science

Continuous Random Variables
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Exponential distribution

𝑓 𝑥 =
1

𝛽
𝑒
−
1
𝛽
𝑥

F 𝑥 = 1 − 𝑒
−
1
𝛽
𝑥
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CDF Properties

• 0 ≤ 𝐹 𝑥 ≤ 1

• F(x) is nondecreasing

• lim
𝑥→∞

𝐹 𝑥 = 1

• lim
𝑥→−∞

𝐹 𝑥 = 0
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Joint Probability Mass Function

• 𝑝 𝑥, 𝑦 = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) for all x,y

• X and Y are independent if
𝑝 𝑥, 𝑦 = 𝑃𝑋(𝑥)𝑃𝑌(𝑦) for all x,y

𝑃𝑋 𝑥 = ෍

all 𝑦

𝑝(𝑥, 𝑦)

𝑃𝑌 𝑦 = ෍

all 𝑥

𝑝(𝑥, 𝑦)
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Joint Probability Mass Function

• Are x and y independent?

• 𝑝 𝑥, 𝑦 = ൝
𝑥𝑦

27
for x = 1,2 and y = 2,3,4

0 otherwise

• Draw 2 cards from a deck of 52 w/o 
replacement. Let R.V. X and Y be the number 
of aces and kings that occur. 𝑋, 𝑌 ∈ {0,1,2}
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Jointly Continuous Random Var.

• X and Y are jointly continuous if there is a joint 
p.d.f. of X and Y

𝑃 𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵 = න
𝐵

න
𝐴

𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦

X and Y are independent if
𝑓 𝑥, 𝑦 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) for all x,y

𝑓𝑋 𝑥 = න
−∞

∞

𝑓 𝑥, 𝑦 𝑑𝑦

𝑓𝑌 𝑦 = න
−∞

∞

𝑓 𝑥, 𝑦 𝑑𝑥
12
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Joint Continuous Random Var.

• Are x and y independent?

𝑓 𝑥, 𝑦 = ቊ
24𝑥𝑦 for x,y ≥ 0, 𝑥 + 𝑦 ≤ 1
0 otherwise
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Mean

• Discrete R.V.

𝜇 = 𝐸 𝑋 =෍

𝑗=1

∞

𝑥𝑗𝑝𝑋 𝑥𝑗

• Continuous R.V.

𝜇 = 𝐸 𝑋 = න
−∞

∞

𝑥𝑓𝑋 𝑥 𝑑𝑥

𝐸 𝑐𝑋 = 𝑐𝐸 𝑋

𝐸 ෍
𝑖=1

𝑛

𝑐𝑖𝑋𝑖 =෍
𝑖=1

𝑛

𝑐𝑖𝐸(𝑋𝑖)
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Median

• Median x0.5

– Smallest x s.t. 𝐹𝑋(𝑥) ≥ 0.5

– If X is continuous, 𝐹𝑋 𝑥0.5 = 0.5

• Example

– A discrete R.V. X takes on 1,2,3,4,100 with the 
same probability.

– Mean?

– Median?
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Mode

• Mode

– x that maximize 
𝑓𝑥(𝑥) or 𝑝(𝑥)

– Mode for prev. 
example?

– Mode for 
uniform distr., 
expo. distr.?
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Variance

• Variance

– Measure of the dispersion of a random variable 
about its mean

– 𝜎2 = 𝐸 𝑋 − 𝜇 2 = E 𝑋2 − 𝜇2

– Variance of a single dice throw? Uniform R.V. on 
[0,1]?
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Variance Properties

• 𝑉𝑎𝑟 𝑋 ≥ 0

• 𝑉𝑎𝑟 𝑐𝑋 = 𝑐2𝑉𝑎𝑟 𝑋

• 𝑉𝑎𝑟 σ𝑖=1
𝑛 𝑋𝑖 = σ𝑖=1

𝑛 𝑉𝑎𝑟(𝑋𝑖)

– If Xi's are independent or uncorrelated
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Std. Deviation

• Standard deviation of random variable Xi

• Used more in normal distributions

– Tell the probability of 𝑋 ∈ [𝜇 − 𝑛𝜎, 𝜇 + 𝑛𝜎]

– E.g. P = 0.95 when n = 1.96
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Dependence Between Two R.V.'s

• Covariance Cov(Xi, Xj) or Cij measures 
dependence between two random variables Xi

and Xj

• Cij=Cji

• Example: What is Cov(X,Y)?

𝑓 𝑥, 𝑦 = ቊ
24𝑥𝑦 for x,y ≥ 0, 𝑥 + 𝑦 ≤ 1
0 otherwise
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Covariance Example

• 𝐸 𝑋𝑌 = 0׬
1
0׬
1−𝑥

𝑥𝑦𝑓 𝑥, 𝑦 𝑑𝑦𝑑𝑥

= 0׬
1
𝑥2 0׬

1−𝑥
24𝑦2𝑑𝑦 𝑑𝑥

= 0׬
1
8𝑥2 1 − 𝑥3 𝑑𝑥

=
2

15

• 𝐸 𝑋 = 0׬
1
𝑥𝑓 𝑥 𝑑𝑥 0׬=

1
12𝑥2 1 − 𝑥 2𝑑𝑥 =

2

5

• 𝐶𝑜𝑣 𝑋, 𝑌 =?
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Covariance

• If X and Y are independent, Cov(X,Y) = 0

• If Cov(X,Y) = 0, X and Y are uncorrelated but may 
be dependant (unless they are jointly normally 
distributed)

• If Cov(X,Y) > 0, X and Y are positively correlated

– 𝑋 > 𝜇𝑋 and 𝑌 > 𝜇𝑌 tend to occur together

• If Cov(X,Y) < 0, X and Y are negatively correlated

– 𝑋 > 𝜇𝑋 and 𝑌 < 𝜇𝑌 tend to occur together
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Correlation

• Measure of the dependence between Xi and Xj

(among X1, X2, … Xn, e.g. in simulation output)

• Cij is not dimensionless

• Correlation Cor 𝑋𝑖 , 𝑋𝑗 = 𝜌𝑖𝑗 =
𝐶𝑖𝑗

𝜎𝑖
2𝜎𝑗

2

– Same sign as Cij

– In [-1, 1]

• Close to -1 => Highly negatively correlated

• Close to 1 => Highly positively correlated
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Correlation Example

• 𝑓 𝑥, 𝑦 = ቊ
24𝑥𝑦 for x,y ≥ 0, 𝑥 + 𝑦 ≤ 1
0 otherwise

• 𝐸 𝑋𝑌 =
2

15

• 𝐸 𝑋 = 0׬
1
𝑥𝑓 𝑥 𝑑𝑥 0׬=

1
12𝑥2 1 − 𝑥 2𝑑𝑥 =

2

5

• 𝐸 𝑋2 = 0׬
1
𝑥2𝑓 𝑥 𝑑𝑥 0׬=

1
12𝑥3 1 − 𝑥 2𝑑𝑥 =

1

5

• 𝐶𝑜𝑟 𝑋, 𝑌 =?
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4.3 Simulation Output Data and 
Stochastic Processes

• Simulation output data are random

– Because random variables used as input

– Take care in drawing conclusions

• Stochastic process

– Collection of similar random variables ordered 
over time defined on a common sample space

– State space

25
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Stochastic Processes

• Discrete-time stochastic process

– Index variable takes a discrete set of values

– E.g. X1, X2, …

– E.g. Delay observed by customers

D1 = 0

Di+1 = max{Di + Si – Ai+1, 0}  for i > 0

Why?

• Continuous-time stochastic process

– Index variable takes values in a continuous range

– E.g. [X(t), t >= 0]

– E.g. The number of customers in the queue at time t.

26
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Simulation Output Data and 
Stochastic Processes

• A discrete-time stochastic process X1, X2,… is said to 
be covariance-stationary if:

– Covariance only depends on the separation (or lag)

– Denote the covariance and correlation between Xi and Xi+j

by Cj and j

• 𝜌𝑗 =
𝐶𝑖,𝑖+𝑗

𝜎𝑖
2𝜎𝑖+𝑗

2
=

𝐶𝑗

𝜎2
=

𝐶𝑗

𝐶0
for j = 0, 1, 2, …

• Definition for continuous-time S.P. is similar
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Correlation Example 1

• Output process D1,D2,D3,…

28
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Correlation Example 2

• An (s, S) inventory system

• In month i

– Ii: amount of inventory before ordering

• Ii < s, order S - Ii => ordering cost (major cost)

– Ji: amount of inventory before ordering

• Ji > Qi => holding cost

• Ji > Qi => shortage cost

– Qi: demand, exponential distribution

– Ci: total cost

29
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Correlation Example 2 (cont'd)

30

• Output process C1,C2,C3,…

– 1 < 0

– 2 > 0
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Warmup Period in Simulations

• X1,X2,X3,… is a stochastic process beginning at 
time 0 in a simulation

– Likely not covariance-stationary

• Xk+1,Xk+2,Xk+3,… may be approx. covariance-
stationary if k is large enough

– k: the length of warmup period
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4.4 Estimation of Means, 
Variances, and Correlations

• Sample mean ( ො𝜇) of a set of random variables X1, 
X2,…Xn with finite population mean μ and finite 
population variance σ2

• Unbiased

– 𝐸 ത𝑋(𝑛) = 𝜇

32
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How Close is ത𝑋(𝑛) to 𝜇? (1)

• If Xi's are independent

• The larger n, the closer ത𝑋(𝑛) is to 𝜇

• But we don't know the exact 𝑉𝑎𝑟 ത𝑋(𝑛)

– Estimate it, need to estimate 𝜎2

33

𝑉𝑎𝑟 ത𝑋(𝑛)

= 𝑉𝑎𝑟
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖

=
1

𝑛2
𝑉𝑎𝑟 σ𝑖=1

𝑛 𝑋𝑖

=
1

𝑛2
෍

𝑖=1

𝑛

𝑉𝑎𝑟(𝑋𝑖)

=
1

𝑛2
𝑛𝜎2 =

𝜎2

𝑛
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Estimation of Variances and 𝑉𝑎𝑟 ത𝑋(𝑛)

• If Xi's are IID, sample variance given by ො𝜎2

• Unbiased

• Estimate 𝑉𝑎𝑟 ത𝑋(𝑛)

34

෢𝑉𝑎𝑟 ത𝑋(𝑛) =
𝑆2(𝑛)

𝑛
=
σ𝑖=1
𝑛 𝑋𝑖 − ത𝑋(𝑛) 2

𝑛(𝑛 − 1)

𝐸 𝑆2(𝑛) = 𝜎2
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How Close is ത𝑋(𝑛) to 𝜇? (2)

• Simulation output data are almost always correlated

– 𝜌𝑗 ≠ 0 for j = 1,2,…,n-1

• Assume the stochastic process of X1,X2,…Xn is 
covariance-stationary.

– ത𝑋(𝑛) is still an unbiased estimator of 𝜇

– Can we estimate 𝑉𝑎𝑟 ത𝑋(𝑛) from 
𝑆2(𝑛)

𝑛
?

35

𝑉𝑎𝑟 ത𝑋(𝑛) = σ2
1+2 σ𝑗=1

𝑛−1(1−
𝑗

𝑛
)𝜌𝑗

𝑛

Correlation terms
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• Can we estimate 𝑉𝑎𝑟 ത𝑋(𝑛) from 
𝑆2(𝑛)

𝑛
?

– If 𝜌𝑗 > 0 , 𝐸 𝑆2(𝑛) < σ2

– Don't use 𝑆2(𝑛) to estimate σ2 (if Xi's are correlated)

– If 𝜌𝑗 > 0 , 𝐸
𝑆2(𝑛)

𝑛
< 𝑉𝑎𝑟 ത𝑋(𝑛)

How Close is ത𝑋(𝑛) to 𝜇? (2)

36

𝐸 𝑆2(𝑛) = σ2 1 − 2
σ𝑗=1
𝑛−1(1 −

𝑗
𝑛
)𝜌𝑗

𝑛 − 1

𝐸
𝑆2(𝑛)

𝑛
=

𝑛

1 + 2σ𝑗=1
𝑛−1(1 −

𝑗
𝑛
)𝜌𝑗

− 1

𝑛 − 1
𝑉𝑎𝑟 ത𝑋(𝑛)
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Example

• D1,D2,…,D10 from the process of delays for a 
covariance-stationary M/M/1 queue with 𝜌 = 0.9

• Substituting the true 𝜌𝑗(j = 1, 2, …, 9) into previous 

formulas

– 𝐸 𝑆2(10) = 0.0328σ2

– 𝐸
𝑆2(10)

10
= 0.0034𝑉𝑎𝑟 ഥ𝐷(10)

– Underestimate σ2 and 𝑉𝑎𝑟 ഥ𝐷(10)
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Can we know 𝑉𝑎𝑟 ത𝑋(𝑛) better?
• Estimate correlations

– መ𝐶𝑖𝑗 =
σ
𝑖=1
𝑛−𝑗

𝑋𝑖− ത𝑋(𝑛) 𝑋𝑖+𝑗− ത𝑋(𝑛)

𝑛−𝑗
(denominator can be n)

– ෝ𝜌𝑗 =
መ𝐶𝑖𝑗

𝑆2(𝑛)

• Can help understand 𝑉𝑎𝑟 ത𝑋(𝑛) and correlations. 
However,

– ෝ𝜌𝑗 is biased

– ෝ𝜌𝑗 has large variance (unless n is very large and j << n)

– 𝐶𝑜𝑣( ෝ𝜌𝑗 , ෞ𝜌𝑘) ≠ 0, can't consider ෝ𝜌𝑗 independently

• ෝ𝜌𝑗 may not be zero even if Xi's are independent. It is 

random.
38
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Correlation Estimate Example

39

• D1,D2,…,D100 from the process of delays for a covariance-
stationary M/M/1 queue with 𝜌 = 0.9

• Estimate 𝜌𝑗(j = 1, 2, …, 10)
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Are We Stuck?

• Simulation output data are most likely 
correlated

• Difficulty dealing with correlations

• It is possible to group simulation output data 
into new "observations" and we can use 
results based on IID assumptions

– Chapter 9
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Confidence Intervals and 
Hypothesis Tests for the Mean

• Confidence Intervals

– Get an idea of the range of the mean

• Hypothesis Tests

– Get an idea of what the mean exactly is

41
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Central Limit Theorem

• 𝑍𝑛 =
ത𝑋 𝑛 −𝜇

𝜎2/𝑛

• When n is "sufficiently large", regardless of 
Xi's distribution (Xi's are IID)

– Zn will be approximately distributed as a standard 
normal distribution variable with mean 0 and 
variance 1

– ത𝑋 𝑛 is approximately distributed as a normal 
distribution variable with mean 𝜇 and variance 
𝜎2/𝑛

42
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Confidence Interval for the Mean

• Estimate  𝜎2 by 𝑆2(𝑛)

• 𝑡𝑛 =
ത𝑋 𝑛 −𝜇

𝑆2(𝑛)/𝑛
is approx. 

distributed as a std. 

normal r.v.

• For large n

𝑃 −𝑧1−𝛼/2≤
ത𝑋 𝑛 − 𝜇

𝑆2(𝑛)/𝑛
≤ 𝑧1−𝛼/2

= P ത𝑋 𝑛 − 𝑧
1−

𝛼
2

𝑆2 𝑛

𝑛
≤ 𝜇 ≤ ത𝑋 𝑛 + 𝑧1−𝛼/2

𝑆2(𝑛)

𝑛
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Confidence Intervals for the Mean

• If n is sufficiently large, an approximate 100(1-α) percent 
confidence interval for μ is given by

• Note that ത𝑋 𝑛 , 𝑆2 𝑛 are random variables, not specific 
values
– When they are replaced by values, the probability is no longer 1-α as 

estimates are used.

• Coverage for the confidence interval
– If one constructs a very large number of independent 100(1- 𝛼) 

percent conf. int., each based on n (>> 1) observations, the proportion 
of these conf. int. that contains the mean should be 1- 𝛼
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Confidence Interval Example

• 15 independent samples of size n = 10 from a normal 
distribution with mean 5 and variance 1

• 90 percent confidence interval for mean

• 2 of 13 (15.4%) does not include the mean

45



Jiang Li, Ph.D.
Department of Computer Science

Confidence Intervals for the Mean

• Problem: The more skewed (non-symmetric) the 
underlying distribution, the larger the value of n is 
needed

– If n is small, the actual coverage of a 100(1-α) percent 
conf. int. will generally be less than 1-α

• Need larger actual coverage -> need larger 
confidence interval

– How much larger?

46
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t Confidence Intervals for the Mean

• If Xi's are normal random variables

– n samples: X1, X2, …, Xn

– 𝑡𝑛 =
ത𝑋 𝑛 −𝜇

𝑆2(𝑛)/𝑛
has a t distribution with n-1 degree of 

freedom (n > 1)

– t 100 (1- α) percent confidence interval for μ is given by

– 𝑡𝑛−1,1−𝛼/2 > 𝑧1−𝛼/2

– 𝑡𝑛−1,1−𝛼/2 → 𝑧1−𝛼/2 as n → ∞

• 𝑡40.0.95 differs from 𝑧0.95 by less than 3%
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t Confidence Interval Example

• 10 observations from a normal distribution

– 1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50, 
1.09

– ത𝑋 10 = 1.34, 𝑆2 10 = 0.17

– 90 percent conf. int. for the mean

ത𝑋 10 ± 𝑡9,0.95
𝑠2(10)

10
= 1.34 ± 1.83

0.17

10

= 1.34 ± 0.24
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Distribution Impacts on C.I. Coverage
• Skewness, a measure of symmetry

– 0 for a symmetric distribution, e.g. normal

– 𝑣 =
𝐸 𝑋−𝜇 3

𝜎2 3/2

– Use n samples to get t conf. int., repeat 500 times, 
check coverage
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Willlink Confidence Interval

• Use Estimated Skewness

– ො𝜇3/ 𝑆
2(𝑛) 3/2

• Ƹ𝜇3 =
𝑛 σ𝑖=1

𝑛 [𝑋𝑖− ത𝑋(𝑛)]3

𝑛−1 (𝑛−2)
, a =

ෝ𝜇3

6 𝑛(𝑆2(𝑛))3/2

• 𝐺 𝑟 =
1+6𝑎(𝑟−𝑎) 1/3−1

2𝑎

• 100(1 − 𝛼) percent confidence interval

ത𝑋 𝑛 − 𝐺(±𝑡
𝑛−1,1−

𝛼
2
) 𝑆2(𝑛)/𝑛
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Willlink Confidence Interval Ex.

• 10 observations from a normal distribution

– 1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50, 
1.09

– ො𝜇3 = −0.062, a = −0.048

– 𝐺 𝑟 =
1−0.288(𝑟+0.048)) 1/3−1

−0.096

– 90 percent conf. int. for the mean

[1.34 – 0.31, 1.34 + 0.20]

– For n=10, lognormal dist., 500 experiments, 
Willink C.I. have a coverage of 0.872 vs. 0.796 of t 
C.I., with 76% larger avg. half-length.
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Hypothesis Tests for the Mean

• X1, X2, …, Xn are (approx.) normally distributed

• Null hypothesis H0: 𝜇 = 𝜇0
• Alternative hypothesis H1: 𝜇 ≠ 𝜇0

• If H0 is true, 𝑡𝑛 =
ത𝑋 𝑛 −𝜇0

𝑆2(𝑛)/𝑛
has a t distribution with n-1 degree 

of freedom  => t test

• If  𝑡𝑛 > 𝑡𝑛−1,1−𝛼/2, reject H0

• Otherwise, fail to reject H0

– {𝑥 s.t. 𝑥 > 𝑡𝑛−1,1−𝛼
2
}: rejection (critical) region

– Level (size) of the test = 𝛼, usually 0.05 or 0.10
• Probability to reject H0 when H0 is true.
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Test Errors

• Type I error

– Rejecting H0 when in fact it is true

– Probability is equal to the level α

• Type II error

– Failure to reject H0 when it is false

– Probability denoted by β

53

Power of the test. 

Can only be increased 

by increasing n when 

level is fixed.
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t Test Example 1

• 10 observations from a normal distribution

– 1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50, 
1.09

– ത𝑋 10 = 1.34, 𝑆2 10 = 0.17

– H0: 𝜇 = 1, 𝛼 = 0.1

– 𝑡10 =
ത𝑋 10 −1

𝑆2(10)/10
=

0.34

0.17/10
= 2.65 > 1.83 =

𝑡9,0.95
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t Test Example 2

• n observations from a normal distribution 
with 𝜇 = 1.5 and 𝜎 = 1

• 1000 observations of 𝑡10 =
ത𝑋 10 −1

𝑆2(10)/10

– For 433 of them, |t10| > 1.83 => Estimated power 
is 0.433 for a test at level 0.10

• 1000 observations of 𝑡25 and 𝑡100
– Estimated power is 0.796 and 0.999
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Confidence Interval
vs. Hypothesis Test

• Rejection of the null hypothesis H0: 𝜇 = 𝜇0 at 
level 𝛼 is equivalent to 𝜇0 not being in the 
100(1 - 𝛼) confidence interval for 𝜇

• Confidence interval is preferred

– A range of possible value is provided
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4.6 The Strong Law of Large 
Numbers

• If one performs an infinite number of 
experiments, each resulting in an ത𝑋(n), and n
is sufficiently large, then ത𝑋(n) will be 
arbitrarily close to μ for almost all the 
experiments

57



Jiang Li, Ph.D.
Department of Computer Science

The Strong Law of Large Numbers

58

Figure 4.18 ത𝑋(n) for various values of n when the Xi’s 

are normal random variables with μ=1 and σ2=0.01
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4.7 The Danger of Replacing a 
Probability Distribution by its Mean

• Do not replace an input probability 
distribution by its mean in a simulation model

• Example: manufacturing system with single 
machine tool

– Raw parts arrive at the machine with exponential 
interarrival times with a mean of one minute
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The Danger of Replacing a Probability 
Distribution by its Mean

• Example (cont’d.)

– Processing times at the machine distributed 
exponentially with a mean of 0.99 minutes

– This system is an M/M/1 queue with utilization 
factor ρ = 0.99

– It can be shown that average delay in queue of a 
part in the long run is 98.01 minutes
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The Danger of Replacing a 
Probability Distribution by its Mean

• Example (cont’d.)

– If we replace each distribution by its 
corresponding mean (parts arrive at t = 1 min, t = 
2 min, etc.)

• And if each part has a processing time of exactly 0.99 
minutes

• Then no part is ever delayed in the queue

• The variances as well as the means of the 
input distributions affect the output measures 
for queuing-type systems
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Summary

• PMF, PDF, CDF

• Mean, variance, covariance, correlation

– And their estimates

• Understand how good the estimate of mean is

– Confidence interval

• Ordinary, t, Willink

– Hypotheses test

• Strong law of large numbers

• Don't replace a prob. distribution by its mean
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