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4.1 Introduction

* Use of probability and statistics
— Integral part of a simulation study

— Every modeling team should include at least one
thoroughly trained person

— Understanding how to model a probabilistic
system and validate the model

— Needed to choose input probability distributions
and generate random samples

— Required to analyze output data
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4.2 Random Variables and Their
Properties

* Experiment

— Process whose outcome is not known with
certainty

e Sample space, S
— Set of all possible outcomes, called sample points
 Example: Experiment consisting of flipping a
coin
S={H,T}
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Random Variables and Their
Properties
e P(X<x)

— Probability associated with the event {X < x}

 Discrete random variables

— Can take on a countable number of values

e Continuous random variables

— Can take on an uncountably infinite number of
different values
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Continuous Random Variables

Probability Mass function
PX=x)=0

P(X € B) = [, f(x)dx f(x):Probability density function

X+AXx

P(X € [x,x +Ax]) = [ f(y)dy for I = [a,b]
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X—C0

e lim F(x)=0

X——00
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Joint Probability Mass Function

e p(x,y) =P(X =x,Y =y) forallxy
e XandY are independent if
p(x,y) = Px(x)Py(y) forallxy
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Joint Probability Mass Function

 Are x and y independent?

=2 forx=12andy = 2,3,4
* p(x,y) = {27 |
0 otherwise

 Draw 2 cards from a deck of 52 w/o
replacement. Let R.V. X and Y be the number
of aces and kings that occur. X,Y € {0,1,2}
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Jointly Continuous Random Var.

e XandY are jointly continuous if there is a joint
p.d.f.of Xand Y

P(XEA,YEB)=f Jf(x,y)dxdy
B JA

X and Y are independent if
foy) = fx (X)fy(y) forallxy

Fe) = f £, y)dy

— OO0
00

fr) =] floy)dx
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Joint Continuous Random Var.

 Are x and y independent?

;
) 24xy forxy=0,x+y<1
flxy) = 0 otherwise

\
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Mean

e Discrete R.V.

p=EC) =) xpx(x)
j=1
e Continuous R.V.

p=E0) = | xf@dx
E(cX) = cE(X)

E (zllcin) = zilciE(Xi)
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Median

* Median x, <
— Smallest x s.t. Fy(x) = 0.5
— If X is continuous, Fy(xy<) = 0.5

 Example

— A discrete R.V. X takes on 1,2,3,4,100 with the
same probability.

— Mean?
— Median?
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— Mode for
uniform distr.,
expo. distr.?
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Variance Properties

e Var(X) =0
e Var(cX) = c*Var(X)
» Var(XiZ1 X;) = Xi=q Var(X;)

— If X/'s are independent or uncorrelated
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Std. Deviation

* Standard deviation of random variable X
Frr' — \fffr_rg

e Used more in normal distributions

— Tell the probability of X € [u — no, u + no|
— E.g. P=0.95 whenn=1.96
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Dependence Between Two R.V.'s

* Covariance Cov(X;, X;) or C;; measures
dependence between two random variables X
and X;

Cy = EIX; — m)(X; — w)l = E(X;X;) — ;i
* Gi=GC;
 Example: What is Cov(X,Y)?

y
)V 24xy forxy=0,x+y<1
flxy) = 0 otherwise

\
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Covariance Example

« EQXY) = [, [ xyf(x,y)dydx
1 1—
= [ x? (fo x24y2dy) dx
fol 8x%(1 — x3)dx
B 2
15

« EX) = [} xf (0)dx = [ 12x2(1 — x)2dx =2

« Cov(X,Y) =?
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Covariance

e |f Xand Y are independent, Cov(X,Y) =0

e |If Cov(X,Y)=0, Xand Y are uncorrelated but may
oe dependant (unless they are jointly normally
distributed)

e |f Cov(X,Y) >0, XandY are positively correlated

— X > uyandY > uy tend to occur together

* |f Cov(X,Y) <0, Xand Y are negatively correlated
— X > Uy andY < uy tend to occur together
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Correlation

e Measure of the dependence between X

,and X,

(among X;, X,, ... X_, e.g. in simulation output)

* C;is not dimensionless
Cij

* Correlation Cor(Xi,Xj) = Pij _J
O'iZO'jz

— Same sign as C;

—In[-1, 1]
* Close to -1 => Highly negatively correlated
* Close to 1 => Highly positively correlated
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Correlation Example

. _ | 24xy forxy =0, x+y <1
f(x; )’) {O otherwise
2
« E(XY) = =

+ E(X) = [ xf (0)dx = [} 12x2(1 — x)%dx =

* E(X?) = folxzf(x)dx =f01 12x3(1 — x)?dx =%
* Cor(X,Y) =?
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4.3 Simulation Output Data and
Stochastic Processes

e Simulation output data are random
— Because random variables used as input
— Take care in drawing conclusions

» Stochastic process

— Collection of similar random variables ordered
over time defined on a common sample space

— State space
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Stochastic Processes

* Discrete-time stochastic process

— Index variable takes a discrete set of values

— E.g. X, X,, ...

— E.g. Delay observed by customers
D,=0
D,,=max{D,+S,—A,,, 0} fori>0
Why?

e Continuous-time stochastic process

— Index variable takes values in a continuous range
— E.g. [X(t), t >=0]

— E.g. The number of customers in the queue at time t.
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Simulation Output Data and
Stochastic Processes

* A discrete-time stochastic process X,, X,,... is said to
be covariance-stationary if:

By = fort =1,2,...and —oo < p << @
-:Jl';”’:-::r1 fori=1,2,...and g% <
and C;;,; = Cov(X, X; ;) 1sindependentof s forj =1, 2, ....
— Covariance only depends on the separation (or lag)
— Denote the covariance and correlation between X; and X;,;

by C; and p;
e oo = _Chiti _ G _ G e
pj = o —az—coforJ—O,l,Z,...

0i 0i+j

e Definition for continuous-time S.P. is similar
&t HOWARD Jiang Li, Ph.D.
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Correlation Example 2

* An (s, S) inventory system
* In month i
— |.: amount of inventory before ordering
* |.<s, orderS - |. => ordering cost (major cost)
— J.: amount of inventory before ordering
* J.>Q, => holding cost
* J.>Q, =>shortage cost
— Q;: demand, exponential distribution
— C.: total cost
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Warmup Period in Simulations

* X, X,,X;,... is @ stochastic process beginning at
time O in a simulation

— Likely not covariance-stationary

* Xir1 X2, X 43,--- MAyY be approx. covariance-
stationary if k is large enough

— k: the length of warmup period
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Density function Density function

for X(n) / for X(n)
n small n large

= —ZZ Var(X;)

n ]

=1

1, o
= —ZTlO' - | |

n n I I

* The larger n, the closer X(n) is to u

 But we don't know the exact Var(X(n))

— Estimate it, need to estimate o2
HOWARD 33 Jiang Li, Ph.D.
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Estimation of Variances and Var(X(n))

 If X.'s are 1ID, sample variance given by 62

fy)

> X, — X(m)]?
$(n) = =

n— 1
 Unbiased
E(S%(n)) = ¢*

e Estimate Var(X(n))

S?(n) _ Tia[X; — X))’

Var(X(n)) = - Yo
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How Close is X (n) to u? (2)

e Simulation output data are almost always correlated
—p; #0 forj=1,2,.,n-1

* Assume the stochastic process of X;,X,,...X, is
covariance-stationary.

— X(n) is still an unbiased es%
_ 142 yn-1 1-2 iy — Correlation terms
VClT'(X(’n)) — 02[ J 1( n) J

n

$2(m),

— Can we estimate Var(X(n)) from
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How Close is X (n) to u? (2)

_ 2
* Can we estimate Var(X(n)) from > ,Sn)?
n-1r1 _ 1y,
E(S%(n)) = o> (1 —2 ’"175 — 1”)'0’)

—Ifp; >0, E(S%(n)) < o*

— Don't use S%(n) to estimate o (if X,'s are correlated)
n

: <52<n>> _1+23ia-Ly,

—1

Var(X(n))

n n—1

§%(n)
n

—prj>O,E( )<Va’r()?(n))
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Example

D,,D,,...,.D,, from the process of delays for a
covariance-stationary M/M/1 queue with p = 0.9

* Substituting the true p;(j=1, 2, ..., 9) into previous
formulas
— E(5%(10)) = 0.03280?
2 —
- E(Z52) = 0.0034Var(D(10))
— Underestimate o2 and Var(D(10))
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Can we know Var(X(n)) better?

e Estimate correlations

" N—Jry._% R
— Cj; = 2= Xi X(:z]j[x”” X@) (denominator can be n)
~ _ Gy
~ P T s m)
 Can help understand Var(X(n)) and correlations.
However,
— p; is biased

— p; has large variance (unless n is very large and j << n)

— Cov(p;, px) # 0, can't consider p; independently

* p; may not be zero even if X;'s are independent. It is

random.
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Are We Stuck?

* Simulation output data are most likely
correlated

* Difficulty dealing with correlations

* |tis possible to group simulation output data
into new "observations" and we can use
results based on IID assumptions

— Chapter 9
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Confidence Intervals and
Hypothesis Tests for the Mean

* Confidence Intervals
— Get an idea of the range of the mean

* Hypothesis Tests
— Get an idea of what the mean exactly is
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Central Limit Theorem

X(n)—u
"= o e
* When nis "sufficiently large", regardless of
X.'s distribution (X.'s are 1ID)
— Z_ will be approximately distributed as a standard

normal distribution variable with mean 0 and
variance 1

— X (n) is approximately distributed as a normal
distribution variable with mean u and variance
o’ /n

_-"-:JL HO\VARD 42 Jiang Li, Ph.D.

2 UNIVERSITY Department of Computer Science



Confidence Interval for the Mean

. Copyright © McGraw-Hill Educatiorj. Permission required for reproduction or display.
* Estimate o by S%(n) Y
X(n)—u .
* t, = £ s approx.
VS2(m)/n

distributed as a std.

normal r.v.

Shaded area =1 — «

* Forlargen «

=Y

_ 52(n) _ S?%(n)
1-% < U< X(Tl) + Z1—q/2
2\‘ n \ n
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Confidence Intervals for the Mean

* If nis sufficiently large, an approximate 100(1-a) percent
confidence interval for i is given by

[S%(n)

X(n) * Y

n
* Note that X(n), S?(n) are random variables, not specific
values
— When they are replaced by values, the probability is no longer 1-a as
estimates are used.
* Coverage for the confidence interval

— If one constructs a very large number of independent 100(1- «)
percent conf. int., each based on n (>> 1) observations, the proportion
of these conf. int. that contains the mean should be 1- a
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Confidence Interval Example

* 15 independent samples of size n =10 from a normal
distribution with mean 5 and variance 1

* 90 percent confidence interval for mean
e 20f13(15.4%) does not include the mean

Jiang Li, Ph.D.
Department of Computer Science
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Confidence Intervals for the Mean

* Problem: The more skewed (non-symmetric) the
underlying distribution, the larger the value of n is
needed
— If n is small, the actual coverage of a 100(1-a) percent

conf. int. will generally be less than 1-«a

* Need larger actual coverage -> need larger

confidence interval

— How much larger?
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t Confidence Intervals for the Mean

* If X.'s are normal random variables
— nsamples: X, X,, ..., X

_ X()-u C : : :

t, = NGO has a t distribution with n-1 degree of

freedom (n>1)

n

— t 100 (1- a) percent confidence interval for i is given by
[ o2

S2(n)

;?(H) - frs—l,l—crfﬁ\lu'll 7

—th—11-a/2 = Z1-a/2
— lh-11-a/2 ™ Z1-q/2 35N > ®©

* t40.0.95 differs from z, ¢ by less than 3%
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t Confidence Interval Example

e 10 observations from a normal distribution

—1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50,

1.09

— X(10) = 1.34,5%(10) = 0.17
— 90 percent conf. int. for the mean

X(10) + 9,0.95

= 1.34 + 0.24

£ HOWARD
M UNIVERSITY

s%(10)

\

10

= 1.34 + 1.83
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Distribution Impacts on C.l. Coverage

 Skewness, a measure of symmetry

— 0 for a symmetric distribution, e.g. normal

_ E[(x-pw)®]

- (02)3/2

— Use n samples to get t conf. int., repeat 500 times,
check coverage

Distribution Skewness v n=2>= n =10 n =20 n =40
Normal 0.00 0.910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.852
Hyperexponential 6.43 0.584 0.586 0.682 0.774

£ HOWARD 49 Jiang Li, Ph.D.
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Willlink Confidence Interval

e Use Estimated Skewness

— [13/[S*(n)]3/2
. ., = X X@P i3
N I OO RE
. G(r) = [1+6a(r—a)]t/3-1

2a
* 100(1 — a) percent confidence interval

X(n) — G(£t__ L 1_%)\/52(71) /n

i HO\VAR[) 50 Jiang Li, .
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Willlink Confidence Interval Ex.

e 10 observations from a normal distribution
—1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50,

1.09
— i3 = —0.062,a = —0.048
_ 1/3_
_G(r) = [1-0.288(1r+0.048))] 1

—0.096
— 90 percent conf. int. for the mean

[1.34-0.31, 1.34 + 0.20]

— For n=10, lognormal dist., 500 experiments,
Willink C.I. have a coverage of 0.872 vs. 0.796 of t
C.l., with 76% larger avg. half-length.
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Hypothesis Tests for the Mean

* Xy, X,, ..., X, are (approx.) normally distributed
* Null hypothesis Hy: 1 = g
* Alternative hypothesis H;: u # g

X(n)—po
VS#(m)/n

of freedom =>t test

* IfHyistrue, t, = has a t distribution with n-1 degree

« If |tyl > th_11-a/2, reject H,

* Otherwise, fail to reject H,

— {xst |x| >t a}: rejection (critical) region

Tl—1,1—2

— Level (size) of the test = a, usually 0.05 or 0.10

* Probability to reject H, when H, is true.

i HO\VAR[) 52 Jiang Li, Ph.D.
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* Type |l error

— Rejecting H, when in fact it is true
— Probability is equal to the level o

* Type ll error

— Failure to reject H, when it is false

Test Errors

— Probability denoted by 8

Power of the test.

Can only be increased
by increasing n when
level is fixed.

H, | True False
Outcome
Reject a 5=1- B
Fail to reject | — @ B

£ HOWARD
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t Test Example 1

e 10 observations from a normal distribution

—1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 1.58, 1.55, 0.50,
1.09

— X(10) = 1.34,5%(10) = 0.17

—Hyu=1,a=01

_ X(10)-1 034
JS%2(10)/10  ,/0.17/10

t9,0.95

= 2.65 > 1.83 =

—T10
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t Test Example 2

 n observations from a normal distribution
withu =1.5ando =1
X(10)-1
JS2(10)/10

— For 433 of them, [t,,| > 1.83 => Estimated power
is 0.433 for a test at level 0.10

* 1000 observations of t;5 =

* 1000 observations of t,= and t1yg
— Estimated power is 0.796 and 0.999

i HO\VAR[) 55 Jiang Li, Ph.D.
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Confidence Interval
vs. Hypothesis Test

* Rejection of the null hypothesis H,: 1 = g at
level a is equivalent to uy not being in the
100(1 - a) confidence interval for u

* Confidence interval is preferred

— A range of possible value is provided

&8 HOWARD = Jiang Li, Ph.D.
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4.6 The Strong Law of Large
Numbers

* |f one performs an infinite number of
experiments, each resulting in an X(n), and n
is sufficiently large, then X (n) will be
arbitrarily close to u for almost all the
experiments

THEOREM 4.2. X(n) —> pw.p. 1asn— o

i HO\VAR[) Jiang Li, Ph.D.

M UNIVERSITY Department of Computer Science



HOWARD
B UNIVERSITY

0.90

0.88 J

086 L—— ! ' | - | - !
0 10 20 30 40

-
fi

Figure 4.18 X(n) for various values of n when the X/'s
are normal random variables with y=1 and ¢2=0.01
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4.7 The Danger of Replacing a
Probability Distribution by its Mean

* Do not replace an input probability
distribution by its mean in a simulation model

 Example: manufacturing system with single
machine tool

— Raw parts arrive at the machine with exponential
interarrival times with a mean of one minute

i HO\VAR[) Jiang Li, Ph.D.
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The Danger of Replacing a Probability
Distribution by its Mean

 Example (cont’d.)

— Processing times at the machine distributed
exponentially with a mean of 0.99 minutes

— This system is an M/M/1 queue with utilization
factor p =0.99

— It can be shown that average delay in queue of a
part in the long run is 98.01 minutes

i HO\VAR[) Jiang Li, Ph.D.
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The Danger of Replacing a
Probability Distribution by its Mean

 Example (cont’d.)

— If we replace each distribution by its
corresponding mean (parts arrive at t =1 min, t =
2 min, etc.)

* And if each part has a processing time of exactly 0.99
minutes

 Then no part is ever delayed in the queue
* The variances as well as the means of the
input distributions affect the output measures
for queuing-type systems
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Summary

* PMF, PDF, CDF
* Mean, variance, covariance, correlation

— And their estimates

* Understand how good the estimate of mean is

— Confidence interval
* Ordinary, t, Willink
— Hypotheses test

e Strong law of large numbers

* Don't replace a prob. distribution by its mean
2 HOWARD . Jiang Li, Ph.D.
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