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Building Valid, Credible, 
and Appropriately Detailed 

Simulation Models

Based on the slides provided with the textbook
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5.1 Introduction and Definitions

• We would like to determine whether:

– A simulation model is an accurate representation 
of the actual system

– There is sufficient detail in the model

• Verification

– Determining whether the assumptions document 
has been correctly translated into a computer 
program
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Validation

• Process of determining whether a simulation model is a valid 
representation of a system
– For particular study objectives

• Difficulty depends on the system complexity and existence

• Can only be approximate
– Most valid may not be most cost effective

• Valid for one purpose/application may not be valid for another

• Performance measurement should be the same as that for 
system

• Should be done during model development
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Credibility and Accreditation

• Credibility

– The extent to which a model is accepted by the 
manager as “correct”

• Depends on manager's understanding and knowledge, 
developer reputation, demonstration

• Accreditation

– Official certification that a simulation model is 
acceptable for a particular purpose

• Has to do with quality of data and doc, model dev. and 
use history, known limitations

• Both requires validation and verification
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Timing and relationships of 
validation, verification, and 

Establishing Credibility
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Validation vs. Output Analysis

• Validation

– Make the model as close to the system as possible

• Output analysis

– Simulation run length, warmup period length, 
number of independent model runs etc.

– Make the the estimate of statistics based on 
output as close to the model as possible

• Example: mean

– Mean of the system, mean of the model, estimate 
of the mean 
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5.2 Guidelines for Determining the 
Level of Model Detail

• Define specific issues to be investigated by the 
study

– Do not include more detail than necessary to 
address the issues of interest

• Define performance measures that will be 
used for evaluation

• Use subject-matter experts to help determine 
the level of model detail

• Consider time and money constraints
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Guidelines for Determining the 
Level of Model Detail

• Entity moving through the simulation model 
does not have to be the same as entity 
moving through the system

• Level of detail should be consistent with the 
type of data available

• If number of factors is large, use a coarse 
simulation model or an analytic model to 
learn about critical factors and use them for 
final modeling
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5.3 Verification of Simulation 
Computer Programs

• Verify by debugging

• Eight techniques for debugging simulation 
model computer program

– Some are general
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Techniques for debugging simulation 
model computer program 

• Write code in modules or subprograms

– Main program and few key subprograms should 
be written and debugged first

• Have more than one person review the 
program

– Structured walk-through of program’s code
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Techniques for debugging simulation 
model computer program 

• Run the simulation under a variety of settings of the 
input parameters

– Check to see that output is reasonable

– Compute for some simple cases and compare

• Run the model under simplified assumptions for 
which true characteristics are known

– Compute analytically and compare
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• Trace state variables, statistical counters, 
etc.

–Or use an interactive debugger

• Can change variable values to "force" the 
occurrence of certain types of errors

– Special input may be needed to trigger 
certain events
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Trace Example (With Error)
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• Observe an animation of the simulation 
output

– E.g. A simulation model of a network of 
automobile traffic intersections, cars colliding

• Compute sample mean and variance values 
and compare them with desired mean and 
variance

• Use a commercial simulation package

– Most recent release might have bugs
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5.4 Techniques for Increasing 
Model Validity and Credibility

• Make use of all available information and data

• Interacting with the manager on a regular 
basis

• Maintain a written assumptions document

• Use quantitative techniques to validate model 
components

• Validate output from overall simulation model

• Animation
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Use All Available Info. & Data

• Conversations with subject-matter experts

– Ex: Who to talk with for a cellular network?

• Observations of the system (history or realtime)

– Modelers need to understand the process 
producing the data

– Potential difficulties with data

• Not representative, e.g. one combat differs from another

• Inappropriate type or format, e.g. UTC instead of EST

• Measurement, recording or rounding errors

• Biased, e.g. because of self-interest

• Inconsistent units
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Use All Available Info. & Data (cont'd)

• Existing theory

– E.g. Customer arrival rate is constant => inter-
arrival time probably IID, arrival process is Poisson

• Relevant results from similar simulation 
studies

• Modelers’ experience and intuition
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Interacting w/ the Manager
on a Regular Basis

• Do so throughout the course of the simulation 
study. 

– Maintain manager’s interest and involvement

– Allow manager to contribute knowledge, and to 
reformulate the objectives (as things may get 
clearer)

– More likely for manager to "sign off" since s/he 
understand more
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Maintain a Written Assumptions 
Document

• The doc is about how the system should be modeled

– Not about how the system works

– What to write depends on insight, knowledge and 
experience, usually includes
• Overview of goals, addressed issues, inputs, performance 

measurement

• Description of subsystems and their interaction

• Simplifying assumptions

• Limitations

• Summaries of data sets

• Information sources

• Etc.

– Should have enough detail to be a program "blue-print"
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Maintain a Written Assumptions 
Document (cont'd)

• Perform a structured walk-through of this document 
with both SMEs and managers

– Correct missing or invalid assumptions

• The doc can

– Reduce communication errors

– Enhance credibility
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Use Quantitative Techniques to 
Validate Model Components

• Fit probability distribution to observed data

– Use graphical plots and goodness-of-fit tests (Ch. 6)

• Use Kruskal-Wallis test to check the homogeneity of 
real data for modelling (Ch. 6)

• Sensitivity analysis: determine which factors 
significantly impact performance

– Parameter values, distribution, entity, detail level, etc.

– Factor changes result in little changed results -> non-
sensitive

– Avoid inadvertent impact (e.g. random values different 
between simulation runs)
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• Compare with an existing system

– Compare data from the existing system with 
simulation output using numerical statistics (e.g. 
mean, variance, correlation)  and/or graphical 
plots (e.g. histograms, box plots, spider-web plots)
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Output Validation Example (1) 

• Missile simulation
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Output Validation Example (2) 
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Output Validation Example (3) 
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Output Validation Example (4) 
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• Turing test

– Ask SMEs to differentiate system data and 
simulation data without prior knowledge

– Data may be of various forms, e.g. animation

• Prospective validation (check Model’s ability 
to predict future system behavior)

– Data collected at a later time can be compared 
with predictions to validate the model

– Use discrepancies to improve the model if 
suggested objectively by the results

27
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Techniques for Increasing Model 
Validity and Credibility

• Given discrepancies, what to do?

• Calibration of the model

– Parameters are tweaked until two data sets agree 
closely

– Use another data set pairs to validate tweaking

• The tweaked model might only work well on (or be 
representative of) the first data set
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Calibration Example 
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Validate Output from Overall 
Simulation Model (cont'd)

• Compare results with expert opinion

– If consistent with perceived system behavior, 
model is said to have face validity

• Compare with another model

– Another model developed for the same system for 
a similar purpose and have been validated
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Use Animation

• Provide visual and intuitive perception
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5.5 Management’s Role in the 
Simulation Process

• Responsibilities of the manager

– Formulate problem objectives

– Direct personnel to provide information and data 
to the simulation modeler

• And to attend the structured walk-through

– Interact with the simulation modeler on a regular 
basis

– Use the simulation results as an aid in the 
decision-making process
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5.6 Statistical Procedures for 
Comparing Real-World Observations 

and Simulation Output Data

• Classical statistical tests are not applicable

– Output processes are nonstationary and 
autocorrelated

• Inspection approach

• Confidence-interval approach

• Time-Series approach
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Inspection Approach

• Basic inspection approach

– Compare two sets of statistics from real-world 
output and simulation output

– Simulation uses input from randomly generated 
numbers based on estimated distribution
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Inspection Approach (cont'd)

• Correlated inspection approach

– “Drive” the model with historical system input 
data

• Also called a trace-driven simulation

– Then, compare the model and system outputs

– The more definitive method to validate the 
assumptions of the simulation model
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Correlated Inspection Approach
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Correlated Inspection Approach Ex.

• Five-teller bank w/ or w/o jockeying

• Reason: Var(A-B) = Var(A) + Var(B) – 2Cov(A,B)
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Confidence-Interval Approach
Based on Independent Data

• Compare model to system by constructing a 
confidence interval for 𝜇𝑋 − 𝜇𝑌

• More reliable approach, when it is possible to collect 
large data sets from both system and model

– H0: 𝜇𝑋 = 𝜇𝑌 is false for most cases as models are approx.

– C.I. indicates the magnitude of 𝜇𝑋 − 𝜇𝑌

• Use paired-t approach or Welch approach (Sec. 10.2)

– Paired-t: Same data set size for real and model. May use 
the correlated inspection approach.

– Welch: Can have diff. data set size (>= 2). Real and model 
data must be independent.
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Confidence-Interval Approach
Based on Independent Data (cont'd)

• If  0 is not in the C.I., 𝜇𝑋 − 𝜇𝑌 is statistically 
significant at level 𝛼

– Equivalent to rejecting H0: 𝜇𝑋 = 𝜇𝑌
– The model may still in practically valid

– When is 𝜇𝑋 − 𝜇𝑌 practically significant?
• Subjective decision, depending on model purposes and utility 

function (that measures preferences)
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Confidence-Interval Approach Ex. 1

• Five-teller bank w/ or w/o jockeying

– ഥ𝑊 10 = ത𝑋 10 − ത𝑌 10 = 2.99 − 3.68 = −0.69

– 𝑉𝑎𝑟 ഥ𝑊 10 =
σ𝑗=1
10 𝑊𝑗− ഥ𝑊 10

2

(10)(9)
= 0.02

– 90% c.i. of 𝜇𝑋 − 𝜇𝑌 (paired-t approach)

ഥ𝑊 10 ± 𝑡9,0.95 𝑉𝑎𝑟 ഥ𝑊 10 = −0.69 ± 0.26

– 𝜇𝑋 − 𝜇𝑌 statistically significant
• Practical significant?
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Confidence-Interval Approach Ex. 2

• Missile simulation

• Xi, Yi: Missile distance from target

• ത𝑋 8 = 159.95, 𝑆𝑋
2 8 = 355.75

• ത𝑌 15 = 183.5, 𝑆𝑌
2 15 = 545.71

• መ𝑓 = 17.34 (estimated degree of freedom)

• 95% c.i. of 𝜇𝑋 − 𝜇𝑌 (Welch approach)

• ത𝑋 8 − ത𝑌 15 ± 𝑡 Ƹ𝑗,0.975
𝑆𝑋
2 8

8
+

𝑆𝑌
2 15

15
= −23.55 ± 18.97
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Time-series Approaches

• Require only one set of each type of output 
data

• Spectral-analysis approach

– Compute the sample spectrum of each output 
process

– Construct a confidence interval for the difference 
of the logarithms of the two spectra

– Output processes must be covariance-stationary

– Mathematical sophisticated
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Other Approaches

• Hypothesis test for a trace-driven simulation 
model

– Kleijnen, Bettonvil, and Van Groenendaal (1998)

• Distribution-free hypothesis test based on 
bootstrapping

– Kleijnen, Cheng, and Bettonvil (2000, 2001)

• Both tests on statistics of the system and the 
model
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