Building Valid, Credible, and Appropriately Detailed Simulation Models

Chapter 5

Based on the slides provided with the textbook

5.1 Introduction and Definitions

- We would like to determine whether:
 - A simulation model is an accurate representation of the actual system
 - There is sufficient detail in the model
- Verification
 - Determining whether the assumptions document has been correctly translated into a computer program

Validation

- Process of determining whether a simulation model is a valid representation of a system
 - For particular study objectives
- Difficulty depends on the system complexity and existence
- Can only be approximate
 - Most valid may not be most cost effective
- Valid for one purpose/application may not be valid for another
- Performance measurement should be the same as that for system
- Should be done during model development

Credibility and Accreditation

• Credibility

- The extent to which a model is accepted by the manager as "correct"
 - Depends on manager's understanding and knowledge, developer reputation, demonstration
- Accreditation
 - Official certification that a simulation model is acceptable for a particular purpose
 - Has to do with quality of data and doc, model dev. and use history, known limitations
- Both requires validation and verification

Timing and relationships of validation, verification, and Establishing Credibility

Validation vs. Output Analysis

- Validation
 - Make the model as close to the system as possible
- Output analysis
 - Simulation run length, warmup period length, number of independent model runs etc.
 - Make the the estimate of statistics based on output as close to the model as possible
- Example: mean
 - Mean of the system, mean of the model, estimate
 - of the mean

5.2 Guidelines for Determining the Level of Model Detail

- Define specific issues to be investigated by the study
 - Do not include more detail than necessary to address the issues of interest
- Define performance measures that will be used for evaluation
- Use subject-matter experts to help determine the level of model detail
- Consider time and money constraints

Guidelines for Determining the Level of Model Detail

- Entity moving through the simulation model does not have to be the same as entity moving through the system
- Level of detail should be consistent with the type of data available
- If number of factors is large, use a coarse simulation model or an analytic model to learn about critical factors and use them for final modeling

5.3 Verification of Simulation Computer Programs

- Verify by debugging
- Eight techniques for debugging simulation model computer program
 - Some are general

Techniques for debugging simulation model computer program

- Write code in modules or subprograms
 - Main program and few key subprograms should be written and debugged first
- Have more than one person review the program
 - Structured walk-through of program's code

Techniques for debugging simulation model computer program

- Run the simulation under a variety of settings of the input parameters
 - Check to see that output is reasonable
 - Compute for some simple cases and compare
- Run the model under simplified assumptions for which true characteristics are known
 - Compute analytically and compare

Average number in queue		Average	utilization	Average delay in queue	
Т	S	Т	S	Т	S
0.676	0.685	0.600	0.604	0.563	0.565
UNIVERSITY			11		Jiang Li, Ph.D., EECS

Techniques for debugging simulation model computer program (cont'd)

- Trace state variables, statistical counters, etc.
 - -Or use an interactive debugger
 - Can change variable values to "force" the occurrence of certain types of errors
 - Special input may be needed to trigger certain events

12

Trace Example (With Error)

	Clock	Server status	Number in queue	Times of	Event list	
Event				arrival	Arrive	Depart
Initialization	0	0	0		0.4	8
Arrival	0.4	1	0		1.6	2.4
Arrival	1.6	1	1	1.5	2.1	2.4
Arrival	2.1	1	2	1.5, 2.1	3.8	2.4
Departure	2.4	1	1	2.1	3.8	3.1
Departure	3.1	1	0		3.8	3.3
Departure	3.3	0	0		3.8	∞

Event	Number of customers delayed	Total delay	Area under number-in-queue function	Area under busy function
Initialization	0	0	0	0
Arrival	1	0	0	0
Arrival	1	0	0	1.1
Arrival	1	0	0.5	1.7
Departure	2	0.8	1.1	2.0
Departure	3	1.8	1.8	2.7
Departure	3	1.8	1.8	2.9

Techniques for debugging simulation model computer program (cont'd)

- Observe an animation of the simulation output
 - E.g. A simulation model of a network of automobile traffic intersections, cars colliding
- Compute sample mean and variance values and compare them with desired mean and variance
- Use a commercial simulation package
 Most recent release might have bugs

5.4 Techniques for Increasing Model Validity and Credibility

- Make use of all available information and data
- Interacting with the manager on a regular basis
- Maintain a written assumptions document
- Use quantitative techniques to validate model components
- Validate output from overall simulation model
- Animation

Use All Available Info. & Data

- Conversations with subject-matter experts

 Ex: Who to talk with for a cellular network?
- Observations of the system (history or realtime)
 - Modelers need to understand the process producing the data
 - Potential difficulties with data
 - Not representative, e.g. one combat differs from another
 - Inappropriate type or format, e.g. UTC instead of EST
 - Measurement, recording or rounding errors
 - Biased, e.g. because of self-interest

16

• Inconsistent units

Use All Available Info. & Data (cont'd)

- Existing theory
 - E.g. Customer arrival rate is constant => interarrival time probably IID, arrival process is Poisson
- Relevant results from similar simulation studies
- Modelers' experience and intuition

Interacting w/ the Manager on a Regular Basis

- Do so throughout the course of the simulation study.
 - Maintain manager's interest and involvement
 - Allow manager to contribute knowledge, and to reformulate the objectives (as things may get clearer)
 - More likely for manager to "sign off" since s/he understand more

Maintain a Written Assumptions Document

- The doc is about how the system should be modeled
 - Not about how the system works
 - What to write depends on insight, knowledge and experience, usually includes
 - Overview of goals, addressed issues, inputs, performance measurement
 - Description of subsystems and their interaction
 - Simplifying assumptions
 - Limitations
 - Summaries of data sets
 - Information sources
 - Etc.
 - Should have enough detail to be a program "blue-print"

Maintain a Written Assumptions Document (cont'd)

- Perform a structured walk-through of this document with both SMEs and managers
 - Correct missing or invalid assumptions
- The doc can
 - Reduce communication errors
 - Enhance credibility

Use Quantitative Techniques to Validate Model Components

- Fit probability distribution to observed data

 Use graphical plots and goodness-of-fit tests (Ch. 6)
- Use Kruskal-Wallis test to check the homogeneity of real data for modelling (Ch. 6)
- Sensitivity analysis: determine which factors significantly impact performance
 - Parameter values, distribution, entity, detail level, etc.
 - Factor changes result in little changed results -> nonsensitive
 - Avoid inadvertent impact (e.g. random values different between simulation runs)

Validate Output from Overall Simulation Model

- Compare with an existing system
 - Compare data from the existing system with simulation output using numerical statistics (e.g. mean, variance, correlation) and/or graphical plots (e.g. histograms, box plots, spider-web plots)

Output Validation Example (1)

Missile simulation

Output Validation Example (2)

Output Validation Example (3)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Output Validation Example (4)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Missile number	Test miss distance	Simulation miss distance
1	174.45	134.60
2	146.09	194.73
3	194.72	168.14
4	149.84	178.82
5	161.93	163.78
6	165.52	186.39
7	153.62	237.20
8	133.46	187.73
9		197.90
10		173.55
11		166.64
12		199.10
13		168.17
14		204.32
15		191.48
Sample mean	159.95	183.50
Sample variance	355.75	545.71

Validate Output from Overall Simulation Model (cont'd)

- Turing test
 - Ask SMEs to differentiate system data and simulation data without prior knowledge
 - Data may be of various forms, e.g. animation
- Prospective validation (check Model's ability to predict future system behavior)
 - Data collected at a later time can be compared with predictions to validate the model
 - Use discrepancies to improve the model if suggested objectively by the results

Techniques for Increasing Model Validity and Credibility

- Given discrepancies, what to do?
- Calibration of the model
 - Parameters are tweaked until two data sets agree closely
 - Use another data set pairs to validate tweaking
 - The tweaked model might only work well on (or be representative of) the first data set

Calibration Example

Validate Output from Overall Simulation Model (cont'd)

• Compare results with expert opinion

 If consistent with perceived system behavior, model is said to have face validity

- Compare with another model
 - Another model developed for the same system for a similar purpose and have been validated

Use Animation

• Provide visual and intuitive perception

5.5 Management's Role in the Simulation Process

- Responsibilities of the manager
 - Formulate problem objectives
 - Direct personnel to provide information and data to the simulation modeler
 - And to attend the structured walk-through
 - Interact with the simulation modeler on a regular basis
 - Use the simulation results as an aid in the decision-making process

5.6 Statistical Procedures for Comparing Real-World Observations and Simulation Output Data

- Classical statistical tests are not applicable
 - Output processes are nonstationary and autocorrelated
- Inspection approach
- Confidence-interval approach
- Time-Series approach

Inspection Approach

- Basic inspection approach
 - Compare two sets of statistics from real-world output and simulation output
 - Simulation uses input from randomly generated numbers based on estimated distribution

Inspection Approach (cont'd)

- Correlated inspection approach
 - "Drive" the model with historical system input data
 - Also called a trace-driven simulation
 - Then, compare the model and system outputs
 - The more definitive method to validate the assumptions of the simulation model

Correlated Inspection Approach

Correlated Inspection Approach Ex.

• Five-teller bank w/ or w/o jockeying

Copyright © McGraw-Hill Education. Permission required for reproduction or display.						
Experiment j	X_{j}	Y_{j}	Y_j'	$X_j - Y_j$	$X_j - Y'_j$	
1	3.06	3.81	2.62	-0.75	0.44	
2	2.79	3.37	2.05	-0.58	0.74	
3	2.21	2.61	4.56	-0.40	-2.35	
4	2.54	3.59	1.86	-1.05	0.68	
5	9.27	11.02	2.41	-1.75	6.86	
6	3.09	3.75	1.85	-0.66	1.24	
7	2.50	2.84	1.13	-0.34	1.37	
8	0.31	0.71	3.12	-0.40	-2.81	
9	3.17	3.94	5.09	-0.77	-1.92	
10	0.98	1.18	1.25	-0.20	-0.27	
Sample mean of all 500	2.10	2.85	2.70	-0.75	-0.60	
Sample variance of all 500	2.02	2.28	2.12	0.08	4.08	

• Reason: Var(A-B) = Var(A) + Var(B) - 2Cov(A,B)

Confidence-Interval Approach Based on Independent Data

- Compare model to system by constructing a confidence interval for $\mu_X \mu_Y$
- More reliable approach, when it is possible to collect large data sets from both system and model
 - $H_0: \mu_X = \mu_Y$ is false for most cases as models are approx.
 - C.I. indicates the magnitude of $\mu_X \mu_Y$
- Use paired-*t* approach or Welch approach (Sec. 10.2)
 - Paired-t: Same data set size for real and model. May use the correlated inspection approach.
 - Welch: Can have diff. data set size (>= 2). Real and model data must be independent.

Confidence-Interval Approach Based on Independent Data (cont'd)

- If 0 is not in the C.I., $\mu_X \mu_Y$ is statistically significant at level α
 - Equivalent to rejecting $H_0: \mu_X = \mu_Y$
 - The model may still in practically valid
 - When is $\mu_X \mu_Y$ practically significant?
 - Subjective decision, depending on model purposes and utility function (that measures preferences)

Confidence-Interval Approach Ex. 1

• Five-teller bank w/ or w/o jockeying $-\overline{W}(10) = \overline{X}(10) - \overline{Y}(10) = 2.99 - 3.68 = -0.69$

$$- \widehat{Var}(\overline{W}(10)) = \frac{\sum_{j=1}^{10} [W_j - \overline{W}(10)]^2}{(10)(9)} = 0.02$$

- 90% c.i. of $\mu_X - \mu_Y$ (paired-t approach)

$$\overline{W}(10) \pm t_{9,0.95} \sqrt{\widehat{Var}(\overline{W}(10))} = -0.69 \pm 0.26$$

 $-\mu_X - \mu_Y$ statistically significant

• Practical significant?

Confidence-Interval Approach Ex. 2

- Missile simulation
- X_i, Y_i: Missile distance from target
- $\overline{X}(8) = 159.95, S_X^2(8) = 355.75$
- $\overline{Y}(15) = 183.5, S_Y^2(15) = 545.71$
- $\hat{f} = 17.34$ (estimated degree of freedom)
- 95% c.i. of $\mu_X \mu_Y$ (Welch approach)

•
$$\bar{X}(8) - \bar{Y}(15) \pm t_{\hat{j},0.975} \sqrt{\frac{S_X^2(8)}{8} + \frac{S_Y^2(15)}{15}} = -23.55 \pm 18.97$$

Time-series Approaches

- Require only one set of each type of output data
- Spectral-analysis approach
 - Compute the sample spectrum of each output process
 - Construct a confidence interval for the difference of the logarithms of the two spectra
 - Output processes must be covariance-stationary
 - Mathematical sophisticated

Other Approaches

- Hypothesis test for a trace-driven simulation model
 - Kleijnen, Bettonvil, and Van Groenendaal (1998)
- Distribution-free hypothesis test based on bootstrapping
 - Kleijnen, Cheng, and Bettonvil (2000, 2001)
- Both tests on statistics of the system and the model

