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Type of system Sources of randomness

Manufacturing Processing times, machine times to failure,
machine repair times

Defense-related Arrival times and payloads of missiles or
airplanes, outcome of an engagement, miss
distances for munitions

Communications Interarrival times of messages, message types,
message lengths

Transportation Ship-loading times, interarrival times of
customers to a subway

Sources of randomness for common simulation applications
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— None is symmetric like a normal distribution,
while the latter is used widely.
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Impact of Using Incorrect Distributions

* Example:

— A single-server queueing system has exponential
interarrival times with a mean of 1 minute.
Service time distribution is best fit by Weibull.
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Service-time Average delay Average number Proportion
distribution in queue in queue of delays =20
Exponential 6.71 6.78 0.064
Gamma 4.54 4.60 0.019

[ Weibull 4.36 441 0.013 ]
Lognormal 1.19 7.30 0.078
Normal 6.04 6.13 0.045

Has the same general shape as Weibull but has a "thicker" right tail
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Processes for Selecting Distributions

* Use data values themselves directly in the
simulation (trace-drive simulation)
— Cons

e Can only reproduce what has happened
* Seldom enough data to run all the desired simulations

— Pros
e Good for use if modeling randomness is hard
e Recommended for model validation
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Processes for Selecting Distributions

* Define an empirical distribution function from
the data values

— Pros

e Avoid the shortcomings of using real data values

— Cons

* Impossible to generate values outside the range of the
observed data, if used in the usual way

 Cumbersome to represent a large set of data values

— 2n numbers stored for n data values
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Processes for Selecting Distributions

* Fit a theoretical distribution to the data
— Perform hypothesis test to determine the goodness of fit
— Pros

* "Smooth" data vs. irregular data from empirical distribution
* Compact way of representing data values
e Easy to change by tuning parameters

— Cons

* No fit for the observed data
— Data are a mixture of multiple heterogeneous populations

— Not enough data values

* Arbitrarily large values can be generated
— Truncate the distribution
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6.2 Useful Probability Distributions

* For a given family of continuous distributions

— There are several ways to parameterize the probability
distribution

* Three basic types of parameters

— Location parameter

* Midpoint or lower endpoint of the distribution's range

— Scale parameter

e Scale of the measurement of the values in the distribution's rnage

— Shape parameter
* Alters a distribution's properties more fundamentally
e Adistribution may have from 0 to 2 shape parameters
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Useful Continuous Distributions (1)
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* Uniform U(a,b) oy

— Used as a "first" model for a

quantity felt to randomly " -«r

varying between a and b,

Scale parameter. b - a

but little else is known 0

— U(0,1) is essential in generating
random values from all other
distributions

— U(0,1) is a special case of the
beta distribution
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Useful Continuous Distributions (2)

* Exponential expo([3)
— Used for interarrival times of
ncustomersn to a System that Occur fl(:\;‘fopyr@ht@McGraw-Hnl Education. Permission required for reproduction or display.

at a constant average rate (3), time Scale parameter >0
to failure of a piece of equipment "

— A special case of both gamma and  os¢
Weibull distributions

— If X, X,,...,X, are lID expo(f), X; + X,+
.. + X ~gamma(m, ), a.k.a m-
Erlang(B) B

0.6 -

04

— The only continuous memoryless
distribution
e P(X>t+s | X>t)=P(X>5s)

0
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Useful Continuous Distributions (3)

* Gamma gamma(a,[3)

— Used for time to complete

some task, e.g. customer server

or machine repair

— expo([3) = gamma(1,[)
— X; ~ gamma(o, )

° X;+X,+...+ X, ~gamma(o, +a, +

oy, B),
* X;/ (X, +X,)~ beta(a, , a,)

— X~ gamma(a;,p)
< 1/X~ PT5(a,1/B)
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Shape param. o >0

Scale param. 3 >0
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Useful Continuous Distributions (4)

* Weibull(o,[3)

— Used for time to complete some
task, time to failure of a piece of
equipment, or as a rough model in
the absence of data

— expo(3) = Weibull (1,[)
— X~ Weibull(o,) & X*~ expo(B%)
— o -> 00, degenerate at 3
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Shape param. o >0
Scale param. 3 >0
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Useful Continuous Distributions (5)

“’
Copy lg t © McGraw-Hill Education. Permissio equi ed fo! ep oduction o dlsplay

— Used for errors of various types
J(x) 4

(e.g. the impact point of a bomb), 5! ocation parameter p
guantities that are the sum of a Scale parameter ¢ > 0
large number of other quantities "'[

— Two jointly distributed normal 03
r.v. uncorrelated => independent

0.2

— Sum of normal distributed r.v.
also has normal distribution

— 1f X, Xpp e X ~ N(0,1), X2 + Xo24 ... o
+ X2~ gamma(n/2, 2)

— X~ N(p,02%) =>e*~ LN(u,0?)

— 0 ->0, degenerateat u
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Shape parameter ¢ > 0
Scale parameter et >0

LN(0,5?)
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Useful Continuous Distributions (7)

* Beta beta(a,, a,)

— Used for a random portion (e.g. the proportion of
defective items in a shipment), time to complete a
task, or a rough model in the absence of data

— U(0,1) = beta(1,1)
— X. ~ gamma(o,B) => X, / (X; + X,) ~ beta(a, , a,)
— X on [0,1] can be scaled to [a,b] by a + (b-a)X
— X~ beta(a,,, a,,) <& 1 —-X~ beta(a,, o)
& X/(1-X) ~ PT6(0l,, 0, 1)

— Symmetric about x =% if and only if o, = @,

£ HOWARD 16
A UNIVERSITY Jiang Li, Ph.D., EECS



Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Fo) A
3

a1=5,a2=5

/ a; = 1,a2=1\
| | ! |
0.4 0.6 0.8

02 04 06 08 107* 0 0.2 ;
(a) (b)
Shape parameters o,> 0, o,>0
FA F) A
3 & =D,0,,=08 3
a; =08, a,=2

o) a1=1,a2=2 2
a1=2,a2=1

(©)
HOWARD .
M UNIVERSITY Jiang Li, Ph.D., EECS



Useful Continuous Distributions (8)

* Persontype V PT5(a,[3)
— Used for time to perform a task
— Larger spike than lognormal close tox =0

— Inverted gamma distribution
* X~ PT5(a,1/B) & 1/X ~ gamma(a,B)
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— Mean and variance fp
exist only for certain ol "y
values of the shape L Shape param. a. > 0
parameter o Scale param. 3 >0
a =72
12+ _
06 | 2 PT5(ct,1)
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Useful Continuous Distributions (9)

* Person type VI PT6(a,, a,, B)
— Used for time to perform a task
— X~ PT6(al,, a,, 1) < X/(1+X) ~ beta(a,, o)
— X, ~ gamma(a,, B), X, ~ gamma(a,, 1)
=> X,/ X, ~ PT6(ay, a1, B)

— Mean and variance exist only for certain values of
the shape parameter a,
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0,=0,<0

Location param. a
Scale param.b-a>0
Shape param. o, > 0, a,
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pX) A

p) + cse + n 1 — 2T
Binomial(n, p)
* A special case of

Binomial(1, p)

e Number of failures
before the first success

~geom
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Useful Discrete Distributions (4)

e Geometric geom ( o ) S e e pm:(m ot raproducion of hapley
— Number of failures before the first success Zi I
in a sequence of independent Bernoulli -
trials with probability p of success 03
— Discrete analog of the expo. distribution, 02T
also memoryless “‘(‘)_ ‘ IEEETT
— Model number of items inspected before 6128456738090
seeing the first defective item, number of ~ »4 p =050
items in a batch of random size, number of .|
items demanded from an inventory 04l
— Y, ~ Bernoulli(p), X =min{i:Y=1} =1, X~ 03
geom(p) 02 ‘
— X, ~ geom(p), X; + X, + ... + X_ ~ negbin(n,p) 0'(1) | N
0 1 2 3 4 5 6 7 8 9 10X
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Useful Discrete Distributions (5)
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pX) A

* Negative binomial el p=05
. 0.25

negbin(s,p) .

— Number of failures before the o5t
s-th success in Bernoulli trials ~ *'f

0.05 -

— Model number of good items . | [, g
inspected before seeing the s- chr s e TR e
th defection, # items in a il =5

p = 0.

batch of random size, # items o5}
demanded from an inventory o

I

— X, ~ negbin(s, p), X; + X, + ... + z:z
X~ negbin(sl+s2 + ...+ sn,p) 0'_05 i ‘ | |
| I
0

X

o 1 2 3 4 5 6 7 8 9 10
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Empirical Distributions (1)

* For continuous r.v.
— Have individual original sample values
— Sort the samples into increasing order

0 if x < X(l)

) i1 x=X(i) . _ _ _ _
— F(x) = —+ Doy —Xo) if Xy sx <Xggpfori=12,..,n-1
le(n) <Xx

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

— Look at the r.v. as discrete uniform F(x) A

— Use uniform dist. within each interval
— Con ;
* Random values generated ;

are within X, and X,
* The mean of F(x) # X(n) 5

L | | | | |

Xa) Xo) X3) Xay X) X(6)

=Y

Continuous, piecewise-linear empirical distribution

g HOWARD ;3 function from original data
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F(x)

e o e o e e e e e e e e o e — o —— —

p—

Wl— Wl Wi wns

* Total number: n

| | 1 | | |

X Xo) Xp) Xa X X6)

* jthinterval contains n,

Y

observations
— G(ap) =0, G(a;) = (ny+n,+...+n;)/n (for 0 < j < k)

0 . if x < a,
G(aj 1)+ ——I== [G(a]) G(a] )l ifaj 1 <x<ajfor0<j<k
1 if a, <x
HOWARD 34
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Empirical Distributions (3)

e For discrete r.v.

— Have individual original sample values

* For each possible value x, an empirical mass function is
the proportion of the samples of that value

— Have group data

e Define a mass function such that the sum of the p(x)'s
over all possible values of x in an interval is equal to the
proportion of the samples in that interval

* Individual p(x)'s can be allocated arbitrarily

£ HOWARD 36
A UNIVERSITY Jiang Li, Ph.D., EECS



37

6.3 Techniques for Verifying
Sample Independence

* A key assumption by many statistical
techniques

— Individual observations represent independent
samples from an underlying distribution

* An example of non-independent data

— Hourly samples of temperature from a specific
city, starting at noon

* Adjacent sample values will be positively correlated
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Maximum
correlation
0.159

Minimum
correlation
—-0.129

Xi+1
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Techniques for Verifying Sample
Independence (cont'd)

e Rank von Neumann test

— Requires there be no “ties” (equal values) in the
data

— This requirement generally will not be met for
discrete data

e Run the test
—Sec.7.4.1
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6.4 Activity |: Hypothesizing
Families of Distributions

* Process of determining appropriate general families of
distributions, based on their shape

— Without concern for parameter values

* Prior knowledge can sometimes be used
— E.g. customers arrive one at a time at a constant rate => |ID expo.
— E.g. Service time can't use normal dist. as it must be positive
— E.g. Proportion of defective items can't be gamma as proportion must
bein [0, 1]
* |n practice, hypothesizing a distribution family is somewhat
less structured
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Continuous (C)
or discrete (D) Comments

Function Sample estimate (summary statistic)

Minimum, maximum Xay X c,D [X(1) X(,»] 1s @ rough
estimate of the range

X(n) C,D Measure of central
tendency
X if nis odd
Bt} = { Werliyd) c ¢, D Alternative measure of
X2y + Xy +1)1/2 if n is even central tendency

S2(n) C,D Measure of variability
2 A /S2
Coefficient of variation, cv = \/; cv(n) = _—(n) C Alternative measure of
p X(n) variability
L o’ . S3(n) .
Lexis ratio, 7 = — F(n) = = D Alternative measure of
p X(n) variability
EL(X — p)°] 2 2 B~ Rl
Skewness, v = @'2—)3/2 v(n) = - D=2 TIIEE C,D Measure of symmetry
HOWARD s
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Summary Statistics (2)

 Can be used to suggest an appropriate distribution
family

» If X(n) = X,:(n), the underlying distribution may
be symmetric

 ¢v (n) = 1, the underlying distribution may be
exponential

* Forgamma or Weibull dist.,, cv(n)>1/=1/<
1 for shape parameter oo <1/=1/>1

£ HOWARD 43
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Summary Statistics (4)

* Lexisratio=1,<1, > 1, distribution may be
Poisson, binomial, and negative binomial
respectively

e Estimated skewness can be used to ascertain
the shape of the underlying distribution

— >0, skewed to the right
 Many distributions in practice are

— < 0, skewed to the left
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Histogram for Continuous Data Set (1)

e A graphical estimate of the plot of the PDF
corresponding to data

e Split the range of data values to multiple disjoint
adjacent intervals [b, ,, b)) (i = 1...k) of the same
width

— May need to remove extremely large or small values

— Height of the bar of an interval is the proportion of the
data values in the interval

e Compare the basis of shape

— Ignore location and scale
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A UNIVERSITY Jiang Li, Ph.D., EECS



Histogram for Continuous Data Set (2)

C h(x) — h] ifbj_1 < x < b]

+ P(bj_y <X <by) = [, f)dx = Abf (),
y € (bj_1, bj)
* h(y) = Abf(y), ~ h(y) < f(y)

£ HOWARD
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Histogram for Continuous Data Set (3)

* How many intervals?
— No definite guide
— Struge'srule: k = |1 + log, n|
* Not very useful

— Try multiple values and choose the smallest one
giving a "smooth" histogram
* Too many intervals => h;'s vary too much
* Too few intervals => underlying density is masked
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Histogram for Discrete Data Set (1)

* No need for intervals

* Plot vertical bars of height h; vs x;

— For each possible value x;, h; is the proportion of

the sample values = x;

— h; is an unbiased estimator of p(x) (p(x) is the true
PMF)
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Quantile Summaries

e Useful for determining whether the distribution is
symmetric or skewed right or left

* g-quantile of F(x): x,
— 0< F(x) <1, continuous and strictly increasing
— For0<qg<1,F(x,)=q

* If the underlying distribution is symmetric, the four
midpoints should be about the same L ates of quantiles

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Quantile Depth Sample value(s) Midpoint

Median i=(n+1)/2 X X

Quartiles J=(i+ 1/2 X X—i+1) (X + X w2
Octiles k= ([jl+ 1/2 X Xon—k+1) X + Xiurs1)l/2
Extremes l X X (X, + X,»]/2
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Drive-up Banking Example (1)

e 220 car arrived during 90 minutes and thus
219 interarrival times

* Hypothesize the distribution family of
interarrival times

— Cars arrive one at a time -> independent

— Number of cars arriving in every 15 minutes are
about the same

— Exponential interarrival times

£ HOWARD
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Summary statistic

Minimum

Maximum 1.960
* Underlying distribution is Mean 0.399
probably skewed to the right \1.4ian 0.270
— tv(219) = 0.953 Variance 0.144
« Theoretical value for expo.  Coefficient of variation 0.953
dist. is 1 Skewness 1.478
HOWARD 3

B2 UNIVERSITY Jiang Li, Ph.D., EECS



Quantile Sample Value(s) Midpoint
Median 0.27 0.270
Quartiles 0.100 0.545 0.323
Octiles 28 0.050 0.870 0.460

Extremes 1 0.010 1.960 0.985

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
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0.05 T m
0.00 1 Y I
0.03 0.28 0.53 0.78 1.03 1.28 153 1.78 &
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h(x) A
0.20 _
0.15
0.10 -
0.05 | |
0.04 0.34 0.64 0.94 1.24 1.54 1.84 X
(b)
Ab=0.075
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0.05 —

0.00 [ I 1 [ I I

0.05 0.35 0.65 0.95 1.25 1.55 1.85
(©

Ab=0.100

e Sturge's rule gives Ab=0.250
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Summary statistic

Minimum
Maximum 11.000
Mean 1.891
Median 1.000

Variance 5.285
Lexis ratio 2.795
Skewness 1.687

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
|

0(59), 1(26), 2(24), 3(18), 4(12),
5(5), 6(4), 7(3), 9(3), 11(2)
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Inventory Demand Example (2)

 Lexis ratio 7(156) = 2.795

— Binomial and Poisson not likely

e Skewness 7(156) = 1.687

— Discrete uniform not likely

 Geometric or negative binomial?
— Histogram matches the former better

£ HOWARD 58
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6.5 Activity ll: Estimating Parameters

* Need to specify parameter values to completely

specify the distribution
* Estimator

— Numerical function of the data

— Maximum-likelihood estimators (MLEs) considered here
e Desirable statistical properties of MLEs

— Unique

~E(f)=0asn—>

— Invariant

e MLE of h(0) is h(é)
— Asymptotically normally distributed

s Howarp™ Otrongly consistent  lim 6 =0 (w.p.1)
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Maximume-likelihood Estimators

* Givendata X (i=1, 2, ..., n), likelihood
function
— Discrete (PMF: pg (x))
L(0) = po(X1)pe(X3) ... 0o (X)
— Continuous (PDF: fpg(x))
L(O) = fo(X1)fe(X2) ... fo(X7)

* Find 8 that maximizes L(6)

£ HOWARD
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MLE Example — Expo. Dist. (1)

* Expo. dist. fg(x) = %37 forx>=0

e Likelihood function
(B) 1 ‘%1 ‘% ‘%
L(f)==e P —-e P ..<e
b b b

L 1O
=p eXp(—EEizlxi)

* Log-likelihood function

1 "
() = InL(B) = ~nin(B) =5 } X,

£ HOWARD 61
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MLE Example — Expo. Dist. (2)

—=——+—z X; =0

,8— 11 l—X(Tl)

n

ﬁi——z X; < 0whenp = X(n)

dl®
dp?

£ HOWARD
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MLE Example — Geometric Dist.

* PMF:p,(x) = p(1—p)* forx=0,1, ...
e Likelihood function
L(p) = p™(1 — p)Zi=1 Xi
* Log-likelihood function
[(p) = InL(p) = nlnp + Zn X;In(1 —p)
a n X

— = = =0
dp p 1-p
- 1
p_)?(n)+1
d_lzz_ﬁ_ ?:1Xi<0
dp?>  p? (1-p)?
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Confidence Interval of Parameters

V(6 —0) - 7i\/(o,a(e))
5(0) = —
d?
£ (a7)

_, (6-9)
\/% > N(0,1)
 100(1-a) percent confidence interval
6(6)
n

0+7Z
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Parameter C.I. Example

* |Inventory demand example

* 90% confidence interval of p of Geometric
distribution

n(l—p)

dp?2)  p? (1-p)?  p*(1-p)
6(p) = p*(1—p)

5+ 1645 |P-L7P) _ 03461 0,037

\J n
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Sensitivity to Parameters

 Run simulations for the parameters set at the
lower endpoint/center/upper endpoint of the
confidence interval

* Check if the performance measure varies
much

— If yes, sensitive to parameters
* Need better parameter estimate
* Usually entail collecting more data

£ HOWARD 66
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n
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=1

Look up Table 6.21
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Finding MLE

* Generally not as simple as the examples

* Numerical methods must be used in many
cases

£ HOWARD 68
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Input-model Uncertainty

* Model uncertainty
— Not sure about distribution family for input

 Parameter uncertainty
— Unsure about distribution parameters

* A confidence interval for a simulation
performance measure would be ideal

— Take into account both sampling variability of the
simulation model (Ch. 9) and input model
uncertainty

£ HOWARD 69
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6.6 Activity lll: Determining How
Representative the Fitted Distributions Are

* None of the fitted distributions will be exactly
correct

— Goal: accurate enough for intended purposes of
the model

* Heuristic procedures
* Goodness-of-fit tests

£ HOWARD
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Heuristic Procedures (1)

e Density-histogram plots and frequency comparisons
* For continuous data
— Histogram intervals [by,b,), [by,b,), ..., [b, 1,b})

b:
— Calculate rj = fbj’_lf(x)dx

— Plot both h; and r; in the jth histogram interval for j=1,2,...,k
* For discrete data
— Calculate r; = ﬁ(xj)

— Plot both hj and r; Versus x; for all relevant values of X;

£ HOWARD
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forj=1,2,...,12
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Heuristic Procedures (2)

e Distribution-function-differences plots

— A comparison of the individual probabilities of the fitted
distribution and of that of the underlying distribution
(approx. by empirical distribution)

number of x/s<x
n

— Fn(x) —

— Not easy to eyeball for differences or similarities in the S-
shaped curves of F(x) and F,(x)

— Instead, plot the differences between F(x) and E, (x)
over the range of the data

* If perfect fit, should be on the x axis

£ HOWARD 74
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—0.05

—0.10

—0.15

—0.20 I 1 I I I 1 L
0.01 0.26 0.51 0.76 1.01 1.26 1.51 1.76

X

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

* Inventory demand ..
example 2 —
% Qm)// ~——
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quantile of E,(x)
i-0.5
n
— If the two distributions are the same
and the sample size is large, the plot
will be approx. the 45° line.

qi

— For small to moderate sample sizes,
it may deviate from the 45° line.
— Requires F~1(x), may need

M&%Enumerical approximation

ﬁn([))

F(p)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.
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same and the sample size is large, oy
the plot will be approx. the 45° line.

— For small to moderate sample sizes,
it may deviate from the 45° line. ) )
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A Distribution functions

N R
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Distribution functions
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Heuristic Procedures (3) (cont'd)

* Ties in sample values

* LetY,Y,,...,Y, be the distinct values in

X1, XX,

- . , 0.5
E,(Y;) = q; = (proportion of X/s < Y;) — —

£ HOWARD 80
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2.43

Exponential quantiles

0.01

0.01
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Observed quantiles

2.43

81

Exponential probabilities

0.025

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

0.025

Observed probabilities

0.998
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Geometric probabilities

0.346 1~
0.346 Observed probabilities 0.997
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- Activity lll: Determining How

Representative the Fitted Distributions Are

e Goodness-of-fit tests

— Statistical hypothesis test

— Used to assess whether the observations are an
independent sample from a particular distribution with
distribution function F

— Test null hypothesis H,: The Xi's are I1ID random variables
with distribution function F

* For small to moderate sample sizes

— Not sensitive to subtle disagreements, rather for detecting gross
differences

* For large sample sizes
— H, virtually never exactly true
— We just need a "good enough" distribution

£ HOWARD
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Examples of Goodness-of-Fit Tests

* Chi-square tests
* Kolmogorov-Smirnov tests

£ HOWARD
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Chi-Square Tests (1)

A more formal comparison between data histogram and the
fitted distribution

* Divide the entire range of the fitted distribution into k
adjacent intervals [a,,3,), [34,3,), -, [3,.1,3) (a,/a, may be +/-

o

— N;=number of X/'sin [a; ;,a] (j=1,2,..,k)
— Continuous case: p; = f;j_l f(x)dx

— Discrete case: p; = Zaj_lsxisajﬁ(xi)
k()

J=1 np;j

* np;: the expected number of samples in [a ;,3;]

— Test statistics: y? =

* Reject H, if y? is too large.

£ HOWARD 85
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gammal(k-1)/2,2]

e Atest with approx. level a
rejects Ho if x* > Xi—11-a
(look up Table T.2)

— Valid (i.e. of level a)

Chi-square density with & — 1 df

Shaded area = «

0

asymptotically as n - oo
f———————— Do not reject

HOWARD
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istribution wi
m — 1df

e Critical point y%_,
* Reject Hyif % > xf_11-a 0
* Do not reject H, if
X* < Xiem-11-a
HOWARD

B UNIVERSITY <0
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Asymptotic distribution
function of x? if Hy
is true

1
|
|
|
|
|
|
|
|
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|
|
|
|
|
|
|
|
|
|

2
2
Xk—m—l,l—a/vl Xl-a

X
2
’\Xk—l,l—a

Do not reject

~— Reject —
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Asymptotic distribution

e cost of loss of power ot o 2 1 H,
(probability of rejecting a false
Ho)

is true

— Usually m <=2, k large,
difference between XI%—m—l,l—a 0

d 2 1 b I X%—m—l,l—a/l X%_“ X%_Llfa
an Xk—l,l—a won't be too large L bonotrejet Refer—s
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Chi-Square Tests (5)

* Choosing the number and size of the intervals
— No definitive guideline
— Recommendation: guarantee a valid and unbiases
test
e k>=3
* Equiprobable approach: p,=p,=...=p, (approx. for
discrete data)
* np;>=5(j=1,2,..k)
— For the same data set, different ways of having
intervals may lead to different conclusions

£ HOWARD 89
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Chi-Square Test Example 1

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

2

N, = )
J Interval N; np; —_—
. . np;
* Drive-up Banking Example , T ; i =
2 [0.020, 0.042) I 10.950 0.000
3 [0.042,0.065) 14 10.950 0.850
* N-= 2 19 4 [0.065, 0.089) 14 10.950 0.850
5 [0.089, 0.115) 16 10.950 2329
6 [0.115,0.142) 10 10.950 0.082
~ X 7 [0.142,0.172) 7 10.950 1.425
— — 8 [0.172,0.204) 5 10.950 3233
e F(x)=1—e o0399forx>= | ool o 5
10 0.239, 0.277) 12 10.950 0.101
0 I [0.277,0.319) 7 10.950 1.425
12 [0.319,0.366) g 10.950 1.425
13 [0.366, 0.419) 12 10.950 0.101
. 14 [0.419, 0.480) 10 10.950 0.082
® k = 20 |nterva|5, p = l/k = 15 [0.480, 0.553) 20 10.950 7.480
J 16 [0.553,0.642) 9 10.950 0.347
17 [0.642, 0.757) 11 10.950 0.000
0,05, np = 219)(0,05: 10,950 8 [0.757, 0.919) 9 10.950 0347
J 19 [0.919, 1.195) 14 10.950 0.850
. . . . 20 [1.195, =) 10 10.950 0.082
— Satisfies the guidelines X = 2218

. F(aj) =%=>aj =—O.3991n(1—%),a0 = 0,a5¢9 =

— For other continuous distributions, F! can be evaluated by numerical
methods

e ¥2=22.188

2 L2 _
X19,0.90 =7 X19,0.75 =7?

§ HOWARD »
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2
(N, - npj)

{0} 59 0.471
(1,2} 50 1.203
(3,4,...) 47 0.256

Interval N; np;

Y2 = 1930

2 _
X2,0.90 =7

HOWARD
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Statistic Critical value Result of test

11.383 14.684 Do not reject
27.645 27.204 Reject
50.542 50.660 Do not reject
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Kolmogorov-Smirnov Tests (1)

* Chi-square tests compare a histogram of the data
with the fitted distribution
— Difficult to specify the intervals
— Valid only in an asymptotic sense

e K-S tests compare an empirical distribution function
with the hypothesized one
— No need to group data
— Valid for any sample size

— Tend to be more powerful against many alternative
distributions

£ HOWARD 93
A UNIVERSITY Jiang Li, Ph.D., EECS



Kolmogorov-Smirnov Tests (2)

* For discrete data, required critical values must be
computed using complicated formulas

 The original form is valid only if all the parameters of
the hypothesized distribution are known and the
distribution is continuous

— Has been extended to allow for estimation of the
parameters in normal, lognormal, exponential, Weibull
and log-logistic

 The original form is often applied for continuous
distributions with estimated parameters and discrete
distributions

s Howarp™ 1ype | error smaller than ng)ecified -> loss of power

A UNIVERSITY Jiang Li, Ph.D., EECS



Kolmogorov-Smirnov Tests (3)

* Fitted distribution function F(x)
 Empirical distribution function

E,(Xw) = %for i=1,2,...n
« Statistic D, = sup{|F,(x) — F(x)[}
X

— sup{A}: the smallest value >= all members of A
X

— Computation:

® D,T = max{i—ﬁ(X(i))},D,{ = max{F(X(i)) —E}

1<isn n 1<i<sn n

* D, = max{D,’,D;;}
— Reject H, if D,, exceeds d

n,1-a
— Critical point d,, ,_, depends on F(x)
4 HOWARD

B UNIVERSITY 35 Jiang Li, Ph.D., EECS



Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Geometric meaning of the K-S test statistic D, for n = 4
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Case Adjusted test statistic 0.850 0.900 0.950 0.990

0.11
All parameters (\/r_z + 0.12 + )Dn 1.138 1.224 1.358 1.628
known Vn

N(X(n), S*(n)) (\/r_z — 0.01 + %)DH 0.775 0.819 0.895 1.035
n

_ 0.2 0.5
expo(X(n)) (Dn - —)(\/r_z + 0.26 + —) 0.926 0990 1.094 1.308

n

Vn
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n

_ 0.2 0.5
expo(X(n)) (Dn - —)(\/r_z + 0.26 + —) 0.926 0990 1.094 1.308

n

Vn
5 0 /7 N
B UNIVERSITY 7 Jiang Li, Ph.D., EECS




Copyright © McGraw-Hill Education. Permission required for reproduction or display.
1-a

Case Adjusted test statistic 0.850 0.900 0.950 0.990

0.11
All parameters (\/r_z + 0.12 + )Dn 1.138 1.224 1.358 1.628
known Vn

N(X(n), S*(n)) (\/r_z — 0.01 + %)DH 0.775 0.819 0.895 1.035
n

_ 0.2 0.5
expo(X(n)) (Dn - —)(\/r_z + 0.26 + —) 0.926 0990 1.094 1.308

n

Vn
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11—«

0.900 0.950 0.975 0.990

0.760 0.819 0.880 0.944
0.779 0.843 0.907 0.973
0.790 0.856 0.922 0.988
0.803 0.874 0.939 1.007
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1—«
0.900 0.950 0.975 0.990

0.679 0.730 0.774 0.823
0.698 b 0.800 0.854
0.708 0.770 0.817 0.873
0.715 0.780 0.827 0.886

11Ul
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K-S Test Example

* Drive-up Banking

e F(x) =1—e 0399 forx>=0

* D,,q=0.047
* Adjusted test statistic
D 0.2 V219 + 0.26 + 0> ) _ 0.696
219 219 . \/Tl9 — VU.

* Reject H, or not?

4 HOWARD 0
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6.8 Shifted and Truncated
Distributions

* Modifying a distribution may provide a better fit in some
cases

— Example: bank teller cannot serve a customer in less than 30
seconds

» Shift distribution to the right to disallow values less than 30 seconds
— Shift a distribution to the right by y units: replace x by x - y in PDF
— Exponential distribution original

f(x)zle_% x>0

; =
— Exponential distribution shifted, now has a location param. y
1 XY
f(x) = Eé’ B X2V

£ HOWARD
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Param. Estimation with the Added y

Finding the MLE for y in addition to the MLEs for the
original parameters may not work

— MLEs for some distribution with y are not well defined.

X)X —XGo
X)) TX(n)—2X k)

* First estimatey:y =

— k is the smallest integer in {2, 3, ..., n— 1} such that X >
X

Define X; = X; —y =0 fori=1,2,..,n

Find MLEs of the other parameters using X;'s.

£ HOWARD 106
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Truncate Distributions

* No random values can be larger thanb >0
e Ifthe range of a PDF fis [0, ), define truncated PDF as
f*(x) =f(x)/F(b) for0<x<b

b
F(b) =j f(x)dx
0

 Example: truncated exponential dist. for [0, 90]
X 90

90]_ X
F(b)=f —e Pdx=1—¢ P
o B

1 X
~o B
F1o0 =L

1—e b

£ HOWARD
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6.10 Specifying Multivariate
Distributions, Correlations, and
Stochastic Processes

 Random input variables may be statistically
related to each other

— May form a random vector to be specified by the
modeler

— Could be a correlation between different random
input variables

* In a random vector or stochastic process
e With their own individual, or marginal, distributions

£ HOWARD
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Example Situations

* A maintenance shop with two service stations
— First station inspects, second repairs

— Longer inspection time probably leads to longer
reparation time -> positive correlation

* A communication system

— Large (small) messages tend to come in groups ->
positive correlation through several lags

* An inventory system
— Large orders tends to be followed by small orders

£ HOWARD 111
A UNIVERSITY Jiang Li, Ph.D., EECS



Specifying Multivariate Distributions

* |Input random vector X = (X, X,, ..., Xy)'
* R.v.'s within a X, are correlated

* R.v.'sacross X,'s are independent

* Maintenance shop example

<X11) (Xlz) (Xln)
X21 , X22 o XZn

e Multivariate (joint) distribution function
F(x) — P(XS x) — P(Xl < xl,...,Xd < xd)
— Implies marginal distribution

— Embodies relationships between ther.v.'s

Difficult to estimate the entire multivariate distribution

— Will look at certain useful cases

£ HOWARD 112
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Multivariate Normal Distribution

e A springboard to other more useful distributions

n 1  NTv—1/e
f(x) = (2n)"Z|Z| Z exp _(x M)ZZ (x — 1)

2': the covariance entry with (i,j)th entry g;; = g;; =
Cov(X;, X;)

|2'|: determinant of X

* Fit to d-dimensional data X, X,,...,X,
iI p— X p— (X1’X2_, ...,Xd)T_
k=1 X — X)) K — X))

n

O-ij =
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Multivariate Lognormal Distribution

¢ X=(Xy,X,, ..., X4)" has a multivariate lognormal
distribution iff Y = (Y,Y,, ..., YT = (In X, In X,, ..., In
X4)" has a multivariate normal distribution
X = (e, e, ... e'a)T
Oii
E(X;) =eti"2
Var(X;) = e?titdii(e%i — 1)
e’ —1

CO”(Xi'Xf) B J (e%ii — 1) (e — 1)

 Fitto data

— Take the natural logarithms of data

— Estimate u and X' for multivariate normal dist.
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Specifying Arbitrary Marginal
Distributions and Correlations

* Allow for correlation between various pairs of input
random variables, while not imposing an overall
multivariate distribution

— Fit distributions to each of the univariate random variables
involved

— Estimate correlations
k=1Xix — X)X — X;)

O-ij = Tl

~ 9

Pij = T——=
V 0ii0jj

— Generate such random vectors: Sec 8.5.5
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Specifying Stochastic Processes (1)

A sequence of input random variables are modeled as being draws
from the same distribution with autocorrelation between
themselves

Autoregressive (AR) processes
— Xi=p+ 1Ky — 1) + ¢ Xy — ) + -+ p(Xip — 1) + &
— ¢;: constants for X;'s to have a stationary marginal distribution
— &;: 1ID r.v.'s with mean 0 and particular variance to control X;

Autoregressive moving-average (ARMA) processes
— X, similar to that of AR, with weighted ¢;

Use linear regression to estimate the unknown parameters
Xi's generally restricted to have normal distribution

— Use AR processes as "base" for ARTA models

116
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Specifying Stochastic Processes (2)

e Autoregressive-to-anything (ARTA) processes

— Can exactly match the desired autocorrelation
structures out to a specified lag p and the desired
stationary marginal distribution

— Specify a AR process {Z} with N(0,1) marginal
distribution
- X; = F[®(Z)]
* ®(Z;) has a U(0,1) distribution

* Flis the inverse of the desired stationary marginal
distribution F
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6.11 Selecting a Distribution in the
Absence of Data

e Some simulation studies

— Not possible to gather data on random variables
of interest

— Example: if system does not exist in some form

* Approaches
— Triangular-distribution approach
— Beta-distribution approach
— Lognormal-distribution approach
— Weibull-distribution approach
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Triangular-Distribution Approach

* |dentify an interval [a,b] such that P(a<X<b)x1
— E.g. time to replace a tire

* Decide the mode: the most likely value for X

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

e Cons G A

2/(b— a)

I

— [a,b] is subjective
— No long right tail

<Y
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xal—l(l_x)az—l

B(ai—ay)

a; =08,a,=0.2
a; =0.5,a,=05

0.2 0.4 0.6
@
HOWARD
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Beta-Distribution Approach (2)

e If littleis known about X, or X is equally likely to take
any value, choose a; =, = 1

e |[f X models a task time, assume the distribution is
skewed to the right o, > o > 1

— — b_
o M:a_l_al(b O T = o (D)
a1+a2 CZ1+CZ2—2
— Noteu>m
~ (u—a)(2m—-a—b) . (b—p)a4
° N4 = A =
1 (m-w)(b—-a) 2 u-a

 Both approaches may result in large errors
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Lognormal-Distribution Approach (1)

* If Y~N(u,0%),V=e¥~LN(u o2
1 —(ln x—p)?

fX) = P =%~ x>0
* V=e"+y~LN(y,u0%)
N 1 ~(In(x'-y)-p)°
fX) = G e P~ 202 x>0
— Parameters

* Location: y

* Scale: e#

e Shape: o
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Lognormal-Distribution Approach (2)

* m: mode, X,: g-quantile (100qgth percentile)
* Assume <y <m<x; <

* ¥:Lowest value of X

/ 2
—zq+ Zg —4.c

2
— Zg: g-quantile of a N(0,1) random variable

1n—7]
Xq—Y

g =1In(m—7) + (6)*

— ¢ =In|
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Weibull-Distribution Approach (1)

* Y ~Weibull(a, 8)

F) = apexeie D)
e X =Y +y ~ Weibull(y, a, )

fx) =ap™(x" - V)“'le_(xlﬁ_y)
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Weibull-Distribution Approach (2)

* m: mode, x,: g-quantile (100qgth percentile)
* Assume0 <y <m<x; <

e Estimate o by solving

RIF

m—-y ( a—-1 )

- aln[ 1 ]
\ 1_qJ

Xg =V
f(xn)

xn+1 — xn _f,(x )
n

A
~N"

— Use Newton's method

* Estimate f3

1\a
(1-3
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6.12 Models of Arrival Processes

* Poisson process where the inter-arrival times
are |ID

* Nonstationary Poisson process where the
arrival rate varies with time

e Batch arrivals
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Poisson Process (1)

* Eventtimes:0 =ty <t; <t, < -
* N(t) = max{i:t; < t}: number of events to occur at
or before time t

* Poisson process

— Most commonly used model for arrival process of
customers to a queuing system

— Requirements

* Customers arrive one at a time
* Number of arrivals does not depend on the number of arrivals in
the earlier time interval
— N(t+s) — N(t)isindependent of {N(u),0 <u <t)
* Number of arrivals does not depend on time of day
— N(t+s) — N(t) is independent of t for all t,s >0
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Poisson Process (2)

* N(t+s)— N(t)isaPoisson random variable

—As k
PIN(t+s) — N(t) =k] = P[N(s) = k] = e (As)

k!
k=0,1,2,...and t,s >0

E[N(s)] = As,E[N(1)] = A (arrival rate)

* Inter-arrival times are IID exponential random

1

variables with mean >

— Vice versa

£ HOWARD

M UNIVERSITY 128

Jiang Li, Ph.D., EECS



Nonstationary Poisson Process

* Requirements
— Customers arrive one at a time

— Number of arrivals does not depend on the number of arrivals in the
earlier time interval

 N(t+s)— N(t)isindependent of {N(u),0 <u <t)
* Arrival rate is allowed to be a function of time: A(t)
— Expectation function: A(t) = E[N(t)]

— Rate function: A(t) = %A(t)

« N(t+s)— N(t)isaPoisson random variable
e PES)(p(t,s))k
k!

k=0,1,2,..and t,s >0
t+s

b(t,s) = At + 5) — A(t) = j 1) dy

t

PIN(t+s)—N(t) =k] =
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Example of Estimating A(t)

e (Customer arrival times are collected for a
xerographic copy shop between 11AM and
1P|v| for 8 days }\(,)_ Copyright © McGraw-Hill Education. Permission required for reproduction or display.

e Divide the 2 hours into 12 10-minute
intervals

— May need to try other widths to have not too (f

ragged and not too smooth plots

* Calculate the average number of arrivals in |
the intervals over the 8 days _ -y

0

* Divide the average number of arrivals by o powe T wn
10 minutes to obtain the estimate of the
arrival rate for a particular interval
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Batch Arrivals

 Appropriate when customers arrive in groups
* Compound Poisson process

o N(t) is the number of batches instead of the number
of customers

* X(t) is the total number of individual customers to
arrive by time t
- X)) =3O B fort =0

— B;'s: 1ID random variables, numbers of customers in the i-
th batch,
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6.13 Assessing the Homogeneity of
Different Data Sets

 Sometimes analysts collect different data sets and
would like to know if they are homogeneous
— |If homogeneous, data can be merged
— Otherwise different distribution is needed for each set

— E.g. bank service time of different days, message sizes
received by different computer

* Kruskal-Wallis hypothesis test for homogeneity
— Compute the K-W test statistic
— No assumptions made about the distributions
— No two data values are the same
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Kruskal-Wallis Test

. Sample sets sized n,, n,, ..., N, (Zl N =n)
X;;: j-th sample in i-th set
— R(X ): the rank assigned to among X;; all samples

- R =YL R(Xy)
* Null hypothesis
— H,y: All the population distribution functions are identical

e Alternative hypothesis

— H;: At least one of the populations tends to yield larger observations
than at least one of the other populations

e K-W test statisticT =

o 1)2 ——3(n+1)

* RejectHjatlevel aif T > )(,%_1’1_“

— )(,%_1’1_“: upper 1 — a critical value for a chi-square distribution with k-1 d.f.
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