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Chapter 6

Selecting Input Probability 
Distributions

Based on the slides provided with the textbook
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6.1 Introduction

• Almost all real-world systems contain randomness 
that needs to represented in models
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Sources of randomness for common simulation applications
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Simulation Data Set Examples (1)
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Ship loading times in daysInterarrival times in minutes to a 

drive-up bank
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Simulation Data Set Examples (2)
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Machine processing time for an

automotive manufacturer

Longer right tail (positive skewness)

Minimum  25 minutes

Scaled number of yards of paper on

1000 large rolls of paper used to make

facial or bathroom tissue

Longer left tail (negative skewness)

None is symmetric like a normal distribution,

while the latter is used widely.
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Impact of Using Incorrect Distributions

• Example:

– A single-server queueing system has exponential 
interarrival times with a mean of 1 minute. 
Service time distribution is best fit by Weibull.
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Has the same general shape as Weibull but has a "thicker" right tail
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Processes for Selecting Distributions

• Use data values themselves directly in the 
simulation (trace-drive simulation)

– Cons

• Can only reproduce what has happened

• Seldom enough data to run all the desired simulations

– Pros

• Good for use if modeling randomness is hard

• Recommended for model validation
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Processes for Selecting Distributions

• Define an empirical distribution function from 
the data values

– Pros

• Avoid the shortcomings of using real data values

– Cons

• Impossible to generate values outside the range of the 
observed data, if used in the usual way

• Cumbersome to represent a large set of data values
– 2n numbers stored for n data values

7
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Processes for Selecting Distributions

• Fit a theoretical distribution to the data

– Perform hypothesis test to determine the goodness of fit

– Pros
• "Smooth" data vs. irregular data from empirical distribution

• Compact way of representing data values

• Easy to change by tuning parameters

– Cons
• No fit for the observed data

– Data are a mixture of multiple heterogeneous populations

– Not enough data values

• Arbitrarily large values can be generated

– Truncate the distribution

8
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6.2 Useful Probability Distributions

• For a given family of continuous distributions

– There are several ways to parameterize the probability 
distribution

• Three basic types of parameters

– Location parameter
• Midpoint or lower endpoint of the distribution's range 

– Scale parameter
• Scale of the measurement of the values in the distribution's rnage

– Shape parameter
• Alters a distribution's properties more fundamentally

• A distribution may have from 0 to 2 shape parameters

9



Jiang Li, Ph.D., EECS

Useful Continuous Distributions (1)

• Uniform U(a,b)

– Used as a "first" model for a 
quantity felt to randomly 
varying between a and b, 

but little else is known

– U(0,1) is essential in generating 
random values from all other 
distributions

– U(0,1) is a special case of the 
beta distribution

10

Scale parameter: b - a
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Useful Continuous Distributions (2)

• Exponential expo()

– Used for interarrival times of 
"customers" to a system that occur 
at a constant average rate (), time 
to failure of a piece of equipment 

– A special case of both gamma and 
Weibull distributions

– If X1,X2,…,Xn are IID expo(), X1 + X2+ 
… + Xn ~ gamma(m, ), a.k.a m-
Erlang()

– The only continuous memoryless 
distribution
• P(X > t + s | X > t) = P(X > s)
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Scale parameter  > 0

expo(1)
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Useful Continuous Distributions (3)

• Gamma gamma(,)

– Used for time to complete 
some task, e.g. customer server 
or machine repair

– expo()  gamma(1,)

– Xi ~ gamma(i,)
• X1 + X2+ … + Xn ~ gamma(1 + 2 + 

… + n, ),

• X1 / (X1 + X2) ~ beta(1 , 2)

– X ~ gamma(i,) 

 1/X ~ PT5(,1/)
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Shape param.  > 0

Scale param.  > 0

gamma(,1)
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Useful Continuous Distributions (4)

• Weibull(,)

– Used for time to complete some 
task, time to failure of a piece of 
equipment, or as a rough model in 
the absence of data

– expo()  Weibull (1,)

– X ~ Weibull(,)  X ~ expo()

–  -> , degenerate at 
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Shape param.  > 0

Scale param.  > 0

Weibull(,1)
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Useful Continuous Distributions (5)

• Normal N(,2)

– Used for errors of various types 
(e.g. the impact point of a bomb), 
quantities that are the sum of a 
large number of other quantities

– Two jointly distributed normal 
r.v. uncorrelated => independent

– Sum of normal distributed r.v. 
also has normal distribution

– If X1,X2,…,Xn ~ N(0,1), X1
2 + X2

2+ … 
+ Xn

2 ~ gamma(n/2, 2)

– X ~ N(,2) => ex ~ LN(,2)

–  -> 0, degenerate at 
14

Location parameter 

Scale parameter  > 0

N(0,1)
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Useful Continuous Distributions (6)

• Lognormal LN(,2)

– Used for time to perform a task, quantities that are the 
product of a large number of other quantities

– X ~ LN(,2)   ln(x) ~ N(,2)

–  -> 0, degenerate at e
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Shape parameter  > 0 

Scale parameter e > 0

LN(0,2)
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Useful Continuous Distributions (7)

• Beta beta(1, 2)

– Used for a random portion (e.g. the proportion of 
defective items in a shipment), time to complete a 
task, or a rough model in the absence of data

– U(0,1)  beta(1,1)

– Xi ~ gamma(i,) => X1 / (X1 + X2) ~ beta(1 , 2)

– X on [0,1] can be scaled to [a,b] by a + (b-a)X

– X ~ beta(1, 2)  1 – X ~ beta(2, 1) 

 X/(1-X) ~ PT6(1, 2, 1) 

– Symmetric about x = ½ if and only if 1 = 2
16
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beta (1, 2)

17

Shape parameters 1> 0,  2> 0
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Useful Continuous Distributions (8)
• Person type V  PT5(,)

– Used for time to perform a task

– Larger spike than lognormal close to x = 0

– Inverted gamma distribution
• X ~ PT5(,1/)  1/X ~ gamma(i,) 

– Mean and variance 

exist only for certain 

values of the shape

parameter

18

Shape param.  > 0

Scale param.  > 0

PT5(,1)
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Useful Continuous Distributions (9)

• Person type VI  PT6(1, 2, )

– Used for time to perform a task

– X ~ PT6(1, 2, 1)  X/(1+X) ~ beta(1, 2)

– X1 ~ gamma(1, ), X2 ~ gamma(2, 1) 

=> X1 / X2 ~ PT6(1, 2, )

– Mean and variance exist only for certain values of 
the shape parameter 2

19
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PT6(1, 2, 1)

20

Shape param. 1, 2 > 0, scale param.  > 0
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Useful Continuous Distributions (10)

• Log-logistic LL(,)

– Used for time to 
perform a task

21

Shape param.  > 0

Scale param.  > 0

LL(,1)
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Useful Continuous Distributions (11)

• Johnson SB JSB(1, 2, a, b)

• X ~ JSB(1, 2, a, b) 

 𝛼1 + 𝛼2𝑙𝑛
𝑋−𝑎

𝑏−𝑋
~ N(0,1)

• pdf skewed to 
left/symmetric/right for 1 > 
0, = 0, < 0

22

Location param. a

Scale param. b – a > 0

Shape param. 2 > 0, 1

JSB(1, 2, 0, 1)
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Useful Continuous Distributions (12)
• Johnson SU JSU(1, 2, γ, )

• X ~ JSU(1, 2, γ, ) 

 𝛼1 + 𝛼2𝑙𝑛
𝑋−𝛾

𝛽
+

𝑋−𝛾

𝛽

2
+ 1 ~ N(0,1)

• pdf skewed to left/symmetric/right for 1 > 0, = 0, < 0

23JSU(1, 2, 0, 1)

Location 

param. γ

Scale param. 

 > 0

Shape param.

2 > 0, 1
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Useful Continuous Distributions (13)

• Triangular triang(a,b,m)

– Used as a rough model in the absence of data

– m -> b: right triangular, m -> a: left triangular

– triang(a,b,m) (m -> a or m-> b) are special cases of the beta 
distribution

24

Location param. a

Scale param. b – a > 0

Shape param. m
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Continuous Distribution Use Summary

• Time to complete a tasks

– Gamma, Weibull, lognormal, Pearson type V, 
Pearson type VI, Log-logistic 

25
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Continuous Distribution Use Summary
• Rough model in the absence of data

– Weibull, lognormal, beta, triangular

26
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Useful Discrete Distributions (1)

• Bernoulli(p)

– Used to generate some 
other discrete r.v.

• If Xi ~ Bernoulli(p), X1 + 
X2 + … + Xn ~ 
Binomial(n, p)

• A special case of 
Binomial(1, p)

• Number of failures 
before the first success 
~ geom(p)

27
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Useful Discrete Distributions (2)

• Discrete Uniform DU(I,j)

– DU(0,1) is the same as Bernoulli(0.5)

28
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Useful Discrete Distributions (3)

• Binomial bin(t,p)

– Number of successes in t independent Bernoulli trials with 
probability p of success

• If Xi ~ bin(ti,p), X1 + X2 + … + Xn ~ bin(t1+t2+…+tn, p)

• p = 0.5 

bin(t,p) is symmetric 

• X ~ bin(t,p) 

 t – x ~ bin(t, 1-p)

29
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Useful Discrete Distributions (4)

• Geometric   geom(p)
– Number of failures before the first success 

in a sequence of independent Bernoulli 
trials with probability p of success

– Discrete analog of the expo. distribution, 
also memoryless

– Model number of items inspected before 
seeing the first defective item, number of 
items in a batch of random size, number of 
items demanded from an inventory

– Yi ~ Bernoulli(p), X = min{i:Yi=1} = 1, X ~ 
geom(p)

– Xi ~ geom(p), X1 + X2 + … + Xn ~ negbin(n,p)

30
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Useful Discrete Distributions (5)

• Negative binomial  
negbin(s,p)

– Number of failures before the 
s-th success in Bernoulli trials

– Model number of good items 
inspected before seeing the s-
th defection, # items in a 
batch of random size, # items 
demanded from an inventory

– Xi ~ negbin(si, p), X1 + X2 + … + 
Xn ~ negbin(s1+s2 + … + sn,p)

31
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Useful Discrete Distributions (6)

• Poisson()
– Number of events in an interval of time when the events are occurring 

at a constant rate

– Model # items in a batch of random size, # items demanded from an 
inventory

– Yi IID, 𝑋 = 𝑚𝑎𝑥 𝑖: σ𝑗=1
𝑖 𝑌𝑗 ≤1 ,

X ~ Possion()  Yi ~ expo(1/), 

– Yi IID, 𝑋′ = 𝑚𝑎𝑥 𝑖: σ𝑗=1
𝑖 𝑌𝑗 ≤𝜆 , 

X' ~ Possion()  Yi ~ expo(1)

– Xi ~ Poisson(i), X1 + X2 + … + Xn

~ Possion (1 + 2 + … + n)

32
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Empirical Distributions (1)
• For continuous r.v.

– Have individual original sample values

– Sort the samples into increasing order

– 𝐹 𝑥 = ൞

0
𝑖−1

𝑛−1
+

𝑥−𝑋(𝑖)

(𝑛−1)(𝑋 𝑖+1 −𝑋 𝑖 )

1

if 𝑥 < 𝑋(𝑖)
if 𝑋(𝑖) ≤ 𝑥 < 𝑋 𝑖+1 for 𝑖 = 1,2,… , 𝑛 − 1

if 𝑋(𝑛) ≤ 𝑥

– Look at the r.v. as discrete uniform

– Use uniform dist. within each interval

– Con

• Random values generated

are within X(1) and X(n)

• The mean of F(x)  ത𝑋(𝑛)

33

Continuous, piecewise-linear empirical distribution 

function from original data
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Empirical Distributions

• For continuous r.v. (cont'd)
– Have group data

• The number of samples in each 

of several specified intervals

[a0,a1), [a1,a2), …, [ak-1, ak)

• Total number: n

• jth interval contains nj

observations

– G(a0) = 0, G(aj) = (n1+n2+…+nj)/n (for 0 < j  k)

– 𝐹 𝑥 =

൞

0

𝐺 𝑎𝑗−1 +
𝑥−𝑎𝑗−1

𝑎𝑗−𝑎𝑗−1
[𝐺 𝑎𝑗 − 𝐺 𝑎𝑗−1 ]

1

if 𝑥 < 𝑎0
if 𝑎𝑗−1 ≤ 𝑥 < 𝑎𝑗 for 0 < 𝑗 ≤ 𝑘

if 𝑎𝑛 ≤ 𝑥

34



Jiang Li, Ph.D., EECS

Solve the Bound Problem

• Can append an expo. dist. to the right side

35
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Empirical Distributions (3)

• For discrete r.v.

– Have individual original sample values

• For each possible value x, an empirical mass function is 
the proportion of the samples of that value

– Have group data

• Define a mass function such that the sum of the p(x)'s 
over all possible values of x in an interval is equal to the 
proportion of the samples in that interval

• Individual p(x)'s can be allocated arbitrarily

36
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6.3 Techniques for Verifying 
Sample Independence

• A key assumption by many statistical 
techniques

– Individual observations represent independent 
samples from an underlying distribution

• An example of non-independent data

– Hourly samples of temperature from a specific 
city, starting at noon

• Adjacent sample values will be positively correlated

37
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Techniques for Verifying Sample 
Independence

• Graphical techniques

– Correlation plot, scatter diagram

38

100 independent observations from an expo. dist. with a mean of 1
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Techniques for Verifying Sample 
Independence

• Graphical techniques (cont'd)

– Correlation plot, scatter diagram

39

100 delays in queue from M/M/1 with  = 0.8
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Techniques for Verifying Sample 
Independence (cont'd)

• Rank von Neumann test

– Requires there be no “ties” (equal values) in the 
data

– This requirement generally will not be met for 
discrete data

• Run the test

– Sec. 7.4.1

40
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6.4 Activity I: Hypothesizing 
Families of Distributions

• Process of determining appropriate general families of 
distributions, based on their shape
– Without concern for parameter values

• Prior knowledge can sometimes be used
– E.g. customers arrive one at a time at a constant rate => IID expo.

– E.g. Service time can't use normal dist. as it must be positive

– E.g. Proportion of defective items can't be gamma as proportion must 
be in [0, 1]

• In practice, hypothesizing a distribution family is somewhat 
less structured

41
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Summary Statistics (1)

42
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Summary Statistics (2)

• Can be used to suggest an appropriate distribution 
family

• If ത𝑋(𝑛) ≈ ෠𝑋0.5(𝑛), the underlying distribution may 
be symmetric

• ෞ𝑐𝑣 (𝑛) ≈ 1, the underlying distribution may be 
exponential

• For gamma or Weibull dist., ෞ𝑐𝑣 𝑛 > 1 / ≈ 1 / <
1 for shape parameter   < 1 / =1 / >1

43
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Summary Statistics (3)

• ෞ𝑐𝑣 𝑛 > 1, the underlying distribution has the following 
shape, it'd better be modelled by lognormal
– Lognormal has this shape and cv can be any positive value

– Gamma and Weibull has this shape when  > 1  and cv < 1

• cv not useful for other distributions

44
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Summary Statistics (4)

• Lexis ratio = 1, < 1, > 1, distribution may be 
Poisson, binomial, and negative binomial 
respectively

• Estimated skewness can be used to ascertain 
the shape of the underlying distribution

– > 0, skewed to the right

• Many distributions in practice are

– < 0, skewed to the left

45
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Histogram for Continuous Data Set (1)

• A graphical estimate of the plot of the PDF 
corresponding to data

• Split the range of data values to multiple disjoint 
adjacent intervals [bi-1, bi) (i = 1…k) of the same 
width

– May need to remove extremely large or small values

– Height of the bar of an interval is the proportion of the 
data values in the interval

• Compare the basis of shape

– Ignore location and scale

46
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• ℎ 𝑥 = ቐ
0
ℎ𝑗
0

if 𝑥 < 𝑏0
if 𝑏𝑗−1 ≤ 𝑥 < 𝑏𝑗
if 𝑏𝑘 ≤ 𝑥

• 𝑃 𝑏𝑗−1 ≤ 𝑋 < 𝑏𝑗 = 𝑏𝑗−1׬
𝑏_𝑗

𝑓 𝑥 𝑑𝑥 = Δ𝑏𝑓 𝑦 ,

𝑦 ∈ 𝑏𝑗−1, 𝑏𝑗

• ℎ 𝑦 ≈ Δ𝑏𝑓 𝑦 , ∴ ℎ 𝑦 ∝ 𝑓(𝑦)

47

Histogram for Continuous Data Set (2)
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• How many intervals?

– No definite guide

– Struge's rule: 𝑘 = 1 + log2 𝑛

• Not very useful

– Try multiple values and choose the smallest one 
giving a "smooth" histogram

• Too many intervals => hj's vary too much

• Too few intervals => underlying density is masked

48

Histogram for Continuous Data Set (3)



Jiang Li, Ph.D., EECS

• No need for intervals

• Plot vertical bars of height hj vs xj

– For each possible value xj, hj is the proportion of 
the sample values = xj

– hj is an unbiased estimator of p(xj) (p(x) is the true 
PMF)

49

Histogram for Discrete Data Set (1)
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Histogram with Several Local Modes

• Split the data into two cases

– pj being the proportion of observations for case j

• Overall  PDF

– 𝑓 𝑥 = 𝑝1𝑓1 𝑥 + 𝑝2𝑓2(𝑥)

50
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Quantile Summaries

• Useful for determining whether the distribution is 
symmetric or skewed right or left

• q-quantile of F(x): xq

– 0 < F(x) < 1,  continuous and strictly increasing

– For 0 < q < 1, F(xq) = q

• If the underlying distribution is symmetric, the four 
midpoints should be about the same

51

Estimates of quantiles
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Drive-up Banking Example (1)

• 220 car arrived during 90 minutes and thus 
219 interarrival times

• Hypothesize the distribution family of 
interarrival times

– Cars arrive one at a time -> independent 

– Number of cars arriving in every 15 minutes are 
about the same

– Exponential interarrival times

52



Jiang Li, Ph.D., EECS

Drive-up Banking Example (2)

• To substantiate the 
hypothesis

– ത𝑋 219 = 0.399 >
0.270 = ො𝑥0.5

– ො𝑣 219 = 1.478
• Underlying distribution is 

probably skewed to the right

– ෞ𝑐𝑣 219 = 0.953
• Theoretical value for expo. 

dist. is 1

53
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Drive-up Banking Example (3)

• Quantile summary and box plot

54

Quantile Depth Sample Value(s) Midpoint

Median 110 0.27 0.270

Quartiles 55.5 0.100 0.545 0.323

Octiles 28 0.050 0.870 0.460

Extremes 1 0.010 1.960 0.985
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Drive-up Banking Example (4)

55

Δb=0.050 Δb=0.075
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Drive-up Banking Example (5)

• Sturge's rule gives Δb=0.250

56

Δb=0.100
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Inventory Demand Example (1)

• 156 observations on 
number of items 
demanded in a week 
from an inventory over 
3 years

57
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Inventory Demand Example (2)

• Lexis ratio Ƹ𝜏 156 = 2.795

– Binomial and Poisson not likely

• Skewness ො𝑣 156 = 1.687

– Discrete uniform not likely

• Geometric or negative binomial?

– Histogram matches the former better

58
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6.5 Activity II: Estimating Parameters

• Need to specify parameter values to completely 
specify the distribution

• Estimator

– Numerical function of the data

– Maximum-likelihood estimators (MLEs) considered here

• Desirable statistical properties of MLEs

– Unique

– 𝐸 ෠𝜃 = 𝜃 as 𝑛 → ∞

– Invariant

• MLE of ℎ 𝜃 is ℎ መ𝜃

– Asymptotically normally distributed

– Strongly consistent    lim
𝑛→∞

෠𝜃 = 𝜃 (w.p. 1)

59
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Maximum-likelihood Estimators

• Given data Xi (i = 1, 2, ..., n), likelihood 
function

– Discrete (PMF: 𝑝𝜃 𝑥 )

𝐿 𝜃 = 𝑝𝜃 𝑋1 𝑝𝜃 𝑋2 …𝑝𝜃 𝑋𝑛
– Continuous (PDF: 𝑓𝑝𝜃 𝑥 )

𝐿 𝜃 = 𝑓𝜃 𝑋1 𝑓𝜃 𝑋2 …𝑓𝜃 𝑋𝑛

• Find ෠𝜃 that maximizes 𝐿 𝜃

60
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MLE Example – Expo. Dist. (1)

• Expo. dist. 𝑓𝛽 𝑥 =
1

𝛽
𝑒
−
𝑥

𝛽 for x >= 0

• Likelihood function

𝐿 𝛽 =
1

𝛽
𝑒
−
𝑋1
𝛽
1

𝛽
𝑒
−
𝑋2
𝛽 …

1

𝛽
𝑒
−
𝑋𝑛
𝛽

= 𝛽−𝑛 exp(−
1

𝛽
෍

𝑖=1

𝑛

𝑋𝑖)

• Log-likelihood function

𝑙 𝛽 = 𝑙𝑛𝐿 𝛽 = −𝑛𝑙𝑛 𝛽 −
1

𝛽
෍

𝑖=1

𝑛

𝑋𝑖
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MLE Example – Expo. Dist. (2)

𝑑𝑙

𝑑𝛽
= −

𝑛

𝛽
+

1

𝛽2
෍

𝑖=1

𝑛

𝑋𝑖 = 0

𝛽 =
σ𝑖=1
𝑛 𝑋𝑖
𝑛

= ത𝑋(𝑛)

𝑑𝑙2

𝑑𝛽2
=

𝑛

𝛽2
−

2

𝛽3
෍

𝑖=1

𝑛

𝑋𝑖 < 0 when 𝛽 = ത𝑋(𝑛)
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MLE Example – Geometric Dist.

• PMF: 𝑝𝑝 𝑥 = 𝑝 1 − 𝑝 𝑥 for x = 0,1, …

• Likelihood function

𝐿 𝑝 = 𝑝𝑛 1 − 𝑝 σ𝑖=1
𝑛 𝑋𝑖

• Log-likelihood function

𝑙 𝑝 = 𝑙𝑛𝐿 𝑝 = 𝑛𝑙𝑛𝑝 +෍
𝑖=1

𝑛

𝑋𝑖ln(1 − 𝑝)

𝑑𝑙

𝑑𝑝
=
𝑛

𝑝
−
σ𝑖=1
𝑛 𝑋𝑖
1 − 𝑝

= 0

𝑝 =
1

ത𝑋 𝑛 + 1
𝑑𝑙2

𝑑𝑝2
= −

𝑛

𝑝2
−

σ𝑖=1
𝑛 𝑋𝑖
1 − 𝑝 2

< 0
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Confidence Interval of Parameters 

• 𝑛 መ𝜃 − 𝜃 → 𝑁 0, 𝛿 𝜃

𝛿 𝜃 = −
𝑛

𝐸
𝑑2𝑙
𝑑𝜃2

=> 
෡𝜃−𝜃

𝛿 𝜃

𝑛

→ 𝑁 0,1

• 100(1-) percent confidence interval

መ𝜃 ± 𝑍
1−

𝛼
2

𝛿 𝜃

𝑛
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Parameter C.I. Example

• Inventory demand example

• 90% confidence interval of p of Geometric 
distribution

𝐸
𝑑𝑙2

𝑑𝑝2
= −

𝑛

𝑝2
−

𝑛 1 − 𝑝
𝑝

1 − 𝑝 2
= −

𝑛

𝑝2 1 − 𝑝

𝛿 𝑝 = 𝑝2 1 − 𝑝

Ƹ𝑝 ± 1.645
Ƹ𝑝2 1 − Ƹ𝑝

𝑛
= 0.346 ± 0.037
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Sensitivity to Parameters

• Run simulations for the parameters set at the 
lower endpoint/center/upper endpoint of the 
confidence interval

• Check if the performance measure varies 
much

– If yes, sensitive to parameters

• Need  better parameter estimate

• Usually entail collecting more data
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MLE of Multiple Parameters

• E.g. for gamma distribution

𝐿 𝛼, 𝛽 =
𝛽−𝑛𝛼 ς𝑖=1

𝑛 𝑋𝑖
𝛼−1𝑒𝑥𝑝 −

1
𝛽
σ𝑖=1
𝑛 𝑋𝑖

Γ 𝛼
𝑛

𝑙 𝛼, 𝛽 = ln 𝐿 𝛼, 𝛽

Solve 
𝜕𝑙

𝜕𝛼
= 0 and 

𝜕𝑙

𝜕𝛽
= 0 simultaneously

Or,

𝑇 = ln ത𝑋 𝑛 −෍
𝑖=1

𝑛
ln 𝑋𝑖
𝑛

−1

Look up Table 6.21
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Finding MLE

• Generally not as simple as the examples

• Numerical methods must be used in many 
cases
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Input-model Uncertainty

• Model uncertainty

– Not sure about distribution family for input

• Parameter uncertainty

– Unsure about distribution parameters

• A confidence interval for a simulation 
performance measure would be ideal

– Take into account both sampling variability of the 
simulation model (Ch. 9) and input model 
uncertainty
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6.6 Activity III: Determining How 
Representative the Fitted Distributions Are

• None of the fitted distributions will be exactly 
correct

– Goal: accurate enough for intended purposes of 
the model

• Heuristic procedures

• Goodness-of-fit tests
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Heuristic Procedures (1)

• Density-histogram plots and frequency comparisons

• For continuous data

– Histogram intervals [b0,b1), [b1,b2), … , [bk-1,bk)

– Calculate 𝑟𝑗 = ׬
𝑏𝑗−1

𝑏𝑗 መ𝑓 𝑥 𝑑𝑥

– Plot both hj and rj in the jth histogram interval for j=1,2,…,k

• For discrete data

– Calculate 𝑟𝑗 = Ƹ𝑝 𝑥𝑗

– Plot both hj and rj versus xj for all relevant values of xj
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Density-Histogram Plot Example

• Drive-up Banking Example

• Hypothesized an expo. distribution, MLE መ𝛽 = 0.399

መ𝑓 𝑥 = ൝2.506𝑒
−

𝑥
0.399 if 𝑥 ≥ 0

0 otherwise

72



Jiang Li, Ph.D., EECS

Frequency Comparison Example
• Inventory demand example

• Hypothesized a geometric distribution, MLE Ƹ𝑝 =
0.346

Ƹ𝑝 𝑥 = ቊ
0.346 0.654 𝑥 if 𝑥 = 0,1,2, …
0 otherwise

𝑟𝑗 = Ƹ𝑝 𝑥𝑗 = Ƹ𝑝 𝑗 − 1

for j = 1,2, …, 12
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Heuristic Procedures (2)

• Distribution-function-differences plots

– A comparison of the individual probabilities of the fitted 
distribution and of that of the underlying distribution 
(approx. by empirical distribution)

– 𝐹𝑛 𝑥 =
number of 𝑋𝑖

′𝑠≤𝑥

𝑛

– Not easy to eyeball for differences or similarities in the S-
shaped curves of ෠𝐹(𝑥) and 𝐹𝑛 𝑥

– Instead, plot the differences between ෠𝐹(𝑥) and 𝐹𝑛 𝑥
over the range of the data
• If perfect fit, should be on the x axis
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Distribution-function-differences 
Plot Examples
• Drive-up Banking 

Example

• Inventory demand 
example
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Heuristic Procedures (3)
• Probability plots

• New empirical distribution ෩𝐹𝑛 𝑋 𝑖 =
𝑖−0.5

𝑛

76

• Quantile-quantile (Q-Q) plot
– For continuous data sets

– The qi-quantile of the fitted 
distribution function ෠𝐹(𝑥) vs. the qi-
quantile of ෪𝐹𝑛(𝑥)

– 𝑞𝑖 =
𝑖−0.5

𝑛

– If the two distributions are the same 
and the sample size is large, the plot 
will be approx. the 45o line.

– For small to moderate sample sizes, 
it may deviate from the 45o line.

– Requires ෠𝐹−1(𝑥) , may need 
numerical approximation
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Heuristic Procedures (3) (cont'd)
77

• Probability-probability (P-P) plot
– For continuous and discrete data 

sets

– Plot ෠𝐹(𝑝) vs. ෪𝐹𝑛(𝑝) for p values on 
the abscissa 

– If the two distributions are the 
same and the sample size is large, 
the plot will be approx. the 45o line.

– For small to moderate sample sizes, 
it may deviate from the 45o line.
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Heuristic Procedures (3) (cont'd)

• Q-Q plots amplify differences between the 
tails of the two distributions
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Heuristic Procedures (3) (cont'd)

• P-P plots amplify differences between the 
middle of the two distributions
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Heuristic Procedures (3) (cont'd)

• Ties in sample values

• Let Y1,Y2,…,Yl be the distinct values in 
X1,X2,…,Xn

෨𝐹𝑛 𝑌𝑖 = 𝑞𝑖 = proportion of 𝑋𝑗
′𝑠 ≤ 𝑌𝑖 −

0.5

𝑛
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Q-Q Plot and P-P Plot Example

• Drive-up Banking Example
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P-P Plot Example

• Inventory demand example
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Activity III: Determining How 
Representative the Fitted Distributions Are

• Goodness-of-fit tests

– Statistical hypothesis test

– Used to assess whether the observations are an 
independent sample from a particular distribution with 
distribution function ෠𝐹

– Test null hypothesis H0: The Xi's are IID random variables 
with distribution function ෠𝐹
• For small to moderate sample sizes

– Not sensitive to subtle disagreements, rather for detecting gross 
differences

• For large sample sizes

– H0 virtually never exactly true

– We just need a "good enough" distribution
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Examples of Goodness-of-Fit Tests

• Chi-square tests

• Kolmogorov-Smirnov tests

• Anderson-Darling tests

• Poisson-Process tests
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Chi-Square Tests (1)

• A more formal comparison between data histogram and the 
fitted distribution

• Divide the entire range of the fitted distribution into k 
adjacent intervals [a0,a1), [a1,a2), … , [ak-1,ak) (ak/a0 may be +/-
∞)
– Nj = number of Xi's in [aj-1,aj]    (j = 1,2,…,k)

– Continuous case: 𝑝𝑗 = 𝑎𝑗−1׬
𝑎𝑗 መ𝑓 𝑥 𝑑𝑥

– Discrete case: 𝑝𝑗 = σ𝑎𝑗−1≤𝑥𝑖≤𝑎𝑗 Ƹ𝑝(𝑥𝑖)

– Test statistics: 𝜒2 = σ𝑗=1
𝑘 𝑁𝑗−𝑛𝑝𝑗

2

𝑛𝑝𝑗

• npj: the expected number of samples in [aj-1,aj] 

• Reject H0 if 𝜒2 is too large.
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Chi-Square Tests (2)

• Case 1: All parameters of the fitted distribution are known 
(e.g. in empirical testing of random-number generations)

86

• If H0 is true, 𝜒2 converges (as n 
→ ∞)  to a chi-square 
distribution with k-1 degree of 
freedom (df), the same as 
gamma[(k-1)/2,2]

• A test with approx. level ⍺

rejects H0 if  𝜒2 > 𝜒𝑘−1,1−𝛼
2

(look up Table T.2)
– Valid (i.e. of level ⍺) 

asymptotically as n → ∞
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Chi-Square Tests (3)

• Case 2: Estimate m (>= 1) parameters of the fitted distribution 
by MLE

87

• If H0 is true, 𝜒2 converges (as 
n → ∞)  to a distribution lying 
between chi-square 
distribution with k – 1 and k –
m – 1df 

• Critical point 𝜒1−𝛼
2

• Reject H0 if 𝜒2 > 𝜒𝑘−1,1−𝛼
2

• Do not reject H0 if 

𝜒2 < 𝜒𝑘−𝑚−1,1−𝛼
2
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Chi-Square Tests (4)

• Reject H0 only if 𝜒2 > 𝜒𝑘−1,1−𝛼
2

– Type I error (rejecting a true H0) 
probability is no larger than ⍺

– At the cost of loss of power 
(probability of rejecting a false 
H0) 

– Usually m <= 2, k large, 

difference between 𝜒𝑘−𝑚−1,1−𝛼
2

and 𝜒𝑘−1,1−𝛼
2 won't be too large

88

• What if 𝜒𝑘−𝑚−1,1−𝛼
2 ≤ 𝜒2 ≤ 𝜒𝑘−1,1−𝛼

2 ?



Jiang Li, Ph.D., EECS

Chi-Square Tests (5)

• Choosing the number and size of the intervals

– No definitive guideline

– Recommendation: guarantee a valid and unbiases
test

• k >= 3

• Equiprobable approach: p1=p2=…=pk (approx. for 
discrete data)

• npj >= 5 (j = 1,2,…k)

– For the same data set, different ways of having 
intervals may lead to different conclusions
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Chi-Square Test Example 1
• Drive-up Banking Example

• n = 219

• ෠𝐹 𝑥 = 1 − 𝑒−
𝑥

0.399 for x >= 
0

• k = 20 intervals, pj = 1/k = 
0.05, npj = 2190.05=10.950
– Satisfies the guidelines

90

• ෠𝐹 𝑎𝑗 =
𝑗

20
⇒ 𝑎𝑗 = −0.399 ln 1 −

𝑗

20
, 𝑎0 = 0, 𝑎20 = ∞

– For other continuous distributions, F-1 can be evaluated by numerical 
methods

• 𝜒2=22.188

• 𝜒19,0.90
2 =? 𝜒19,0.75

2 =?
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Chi-Square Test Example 2

• Inventory demand example

• Can only make the pj's roughly equal

• Mode = 0, Ƹ𝑝 0 = 0.346 is the highest value of the mass 
function
– Choice of intervals are limited

• 𝜒2,0.90
2 =?
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Chi-Square Test Example 3

• 856 ship-loading times

• Fitted distribution: log-logistic

• Test at level  = 0.1
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Kolmogorov-Smirnov Tests (1)

• Chi-square tests compare a histogram of the data 
with the fitted distribution

– Difficult to specify the intervals

– Valid only in an asymptotic sense

• K-S tests compare an empirical distribution function 
with the hypothesized one

– No need to group data

– Valid for any sample size

– Tend to be more powerful against many alternative 
distributions
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Kolmogorov-Smirnov Tests (2)

• For discrete data, required critical values must be 
computed using complicated formulas

• The original form is valid only if all the parameters of 
the hypothesized distribution are known and the 
distribution is continuous

– Has been extended to allow for estimation of the 
parameters in normal, lognormal, exponential, Weibull 
and log-logistic

• The original form is often applied for continuous 
distributions with estimated parameters and discrete 
distributions

– Type I error smaller than specified -> loss of power 
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Kolmogorov-Smirnov Tests (3)

• Fitted distribution function ෠𝐹(𝑥)

• Empirical distribution function

𝐹𝑛 𝑋 𝑖 =
𝑖

𝑛
for i = 1,2,…,n

• Statistic 𝐷𝑛 = sup
𝑥

𝐹𝑛 𝑥 − ෠𝐹(𝑥)

– sup
𝑥
{A}: the smallest value >= all members of A

– Computation:

• 𝐷𝑛
+ = max

1≤𝑖≤𝑛
{
𝑖

𝑛
− ෠𝐹 𝑋 𝑖 } , 𝐷𝑛

− = max
1≤𝑖≤𝑛

{ ෠𝐹 𝑋 𝑖 −
𝑖−1

𝑛
}

• 𝐷𝑛 = max{𝐷𝑛
+, 𝐷𝑛

−}

– Reject H0 if Dn exceeds dn,1-⍺

– Critical point dn,1-⍺ depends on ෠𝐹(𝑥)
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Example of K-S Test Statistic 
Computation

96

Geometric meaning of the K-S test statistic Dn for n = 4



Jiang Li, Ph.D., EECS

K-S Tests: Case 1

• Original form

– All parameters known, continuous data

– Dn does not depend on the fitted distribution function

– Adjusted test statistic

𝑛 + 0.12 +
0.11

𝑛
𝐷𝑛, reject H𝑜 if > 𝑐1−𝛼
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K-S Tests: Case 2
• Hypothesized distribution is 𝑁(𝜇, 𝜎2)

– μ, σ2 unknown

• ෠𝐹 𝑥 = Φ{
𝑥− ത𝑋 𝑛

𝑆2 𝑛
}

– Adjusted test statistic

𝑛 − 0.01 +
0.85

𝑛
𝐷𝑛, reject H𝑜 if > 𝑐′1−𝛼
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K-S Tests: Case 3
• Hypothesized distribution is expo(β)

– β unknown, MLE = ത𝑋(𝑛)

• ෠𝐹 𝑥 = 1 − 𝑒
−

𝑥
ഥ𝑋 𝑛 for x >= 0

– Adjusted test statistic

𝑛 + 0.26 +
0.5

𝑛
(𝐷𝑛−

0.2

𝑛
), reject H𝑜 if > 𝑐′′1−𝛼
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K-S Tests: Case 4

• Hypothesized distribution is Weibull with , β unknown

• ෠𝐹 𝑥 = 1 − 𝑒
−

𝑥
෡𝛽

ෝ𝛼

for x >= 0

– Adjusted test statistic
𝑛𝐷𝑛 reject H𝑜 if > 𝑐1−𝛼

∗
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K-S Tests: Case 5
• Hypothesized distribution is log-logistic with , β 

unknown

• Xi's are the logarithms of the basic data points

• ෠𝐹 𝑥 = 1 + 𝑒 − 𝑥−ln ෡𝛽 ෝ𝛼
−1

for -∞<x< ∞

– Adjusted test statistic
𝑛𝐷𝑛 reject H𝑜 if > 𝑐1−𝛼

+
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K-S Test Example

• Drive-up Banking

• ෠𝐹 𝑥 = 1 − 𝑒−
𝑥

0.399 for x >= 0

• D219 = 0.047

• Adjusted test statistic

𝐷219 −
0.2

219
219 + 0.26 +

0.5

219
= 0.696

• Reject H0 or not?
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6.8 Shifted and Truncated 
Distributions

• Modifying a distribution may provide a better fit in some 
cases

– Example: bank teller cannot serve a customer in less than 30 
seconds
• Shift distribution to the right to disallow values less than 30 seconds

– Shift a distribution to the right by  units: replace x by x -  in PDF

– Exponential distribution original

𝑓 𝑥 =
1

𝛽
𝑒
−
𝑥
𝛽 𝑥 ≥ 0

– Exponential distribution shifted, now has a location param. 𝛾

𝑓 𝑥 =
1

𝛽
𝑒
−
𝑥−𝛾
𝛽 𝑥 ≥ 𝛾
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Param. Estimation with the Added 𝛾

• Finding the MLE for 𝛾 in addition to the MLEs for the 
original parameters may not work

– MLEs for some distribution with 𝛾 are not well defined.

• First estimate 𝛾: ෤𝛾 =
𝑋 1 𝑋 𝑛 −𝑋 𝑘

2

𝑋 1 +𝑋 𝑛 −2𝑋 𝑘

– k is the smallest integer in {2, 3, …, n – 1} such that X(k) > 
X(1)

• Define 𝑋𝑖
′ = 𝑋𝑖 − ෤𝛾 ≥ 0 for i = 1,2,…,n

• Find MLEs of the other parameters using 𝑋𝑖
′s. 
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Example

• Unload time of 808 coal trains

• X(1)=3.37, X(2) = 3.68, X(808)=6.32

• ො𝛾 =
𝑋 1 𝑋 808 −𝑋 2

2

𝑋 1 +𝑋 808 −2𝑋 2
= 3.329

• 𝑋𝑖
′ = Xi − 3.329 for i = 1,2,…,808

• MLEs for log-logistic

distribution

ො𝛼 = 7.451, መ𝛽 = 1.271
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Truncate Distributions

• No random values can be larger than b > 0

• If the range of a PDF f is [0, ), define truncated PDF as

𝑓∗ 𝑥 = 𝑓(𝑥)/𝐹(𝑏) for 0  x  b

𝐹 𝑏 = න
0

𝑏

𝑓 𝑥 𝑑𝑥

• Example: truncated exponential dist. for [0, 90]

𝐹 𝑏 = න
0

90 1

𝛽
𝑒
−
𝑥
𝛽𝑑𝑥 = 1 − 𝑒

−
90
𝛽

𝑓∗ 𝑥 =

1
𝛽
𝑒
−
𝑥
𝛽

1 − 𝑒
−
90
𝛽
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6.10 Specifying Multivariate 
Distributions, Correlations, and 

Stochastic Processes

• Random input variables may be statistically 
related to each other

– May form a random vector to be specified by the 
modeler

– Could be a correlation between different random 
input variables

• In a random vector or stochastic process

• With their own individual, or marginal, distributions
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Example Situations

• A maintenance shop with two service stations

– First station inspects, second repairs

– Longer inspection time probably leads to longer 
reparation time -> positive correlation

• A communication system

– Large (small) messages tend to come in groups -> 
positive correlation through several lags

• An inventory system

– Large orders tends to be followed by small orders
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Specifying Multivariate Distributions

• Input random vector X = (X1,X2, … , Xd)T

• R.v.'s within a Xk are correlated

• R.v.'s across Xk's are independent

• Maintenance shop example
𝑋11
𝑋21

,
𝑋12
𝑋22

, … ,
𝑋1𝑛
𝑋2𝑛

• Multivariate (joint) distribution function
𝐹 𝒙 = 𝑃 𝑿 ≤ 𝒙 = 𝑃(𝑋1 ≤ 𝑥1, … , 𝑋𝑑 ≤ 𝑥𝑑)

– Implies marginal distribution

– Embodies relationships between the r.v.'s

• Difficult to estimate the entire multivariate distribution

– Will look at certain useful cases
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Multivariate Normal Distribution

• A springboard to other more useful distributions

𝑓 𝒙 = 2𝜋 −
𝑛
2 𝛴 −

1
2 exp −

𝒙 − 𝝁 𝑇 σ−1(𝒙 − 𝝁)

2

𝛴: the covariance entry with (i,j)th entry 𝜎𝑖𝑗 = 𝜎𝑗𝑖 =

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝛴 : determinant of 𝛴

• Fit to d-dimensional data X1,X2,…,Xn

ෝ𝝁 = ഥ𝑿 = ത𝑋1, ത𝑋2, … , ത𝑋𝑑
𝑇

ො𝜎𝑖𝑗 =
σ𝑘=1
𝑛 (𝑋𝑖𝑘 − ത𝑋𝑖)(𝑋𝑗𝑘 − ത𝑋𝑗)

𝑛
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Multivariate Lognormal Distribution
• X = (X1,X2, … , Xd)T has a multivariate lognormal 

distribution iff Y = (Y1,Y2, … , Yd)T = (ln X1,ln X2, … , ln 
Xd)T has a multivariate normal distribution

𝑋 = 𝑒𝑌1 , 𝑒𝑌2 , … , 𝑒𝑌𝑑 𝑇

𝐸 𝑋𝑖 = 𝑒𝜇𝑖+
𝜎𝑖𝑖
2

𝑉𝑎𝑟 𝑋𝑖 = 𝑒2𝜇𝑖+𝜎𝑖𝑖 𝑒𝜎𝑖𝑖 − 1

𝐶𝑜𝑣 𝑋𝑖, 𝑋𝑗 =
𝑒𝜎𝑖𝑗 − 1

(𝑒𝜎𝑖𝑖 − 1)(𝑒𝜎𝑗𝑗 − 1)

• Fit to data

– Take the natural logarithms of data

– Estimate 𝝁 and 𝛴 for multivariate normal dist.
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Specifying Arbitrary Marginal 
Distributions and Correlations 

• Allow for correlation between various pairs of input 
random variables, while not imposing an overall 
multivariate distribution

– Fit distributions to each of the univariate random variables 
involved

– Estimate correlations

ො𝜎𝑖𝑗 =
σ𝑘=1
𝑛 (𝑋𝑖𝑘 − ത𝑋𝑖)(𝑋𝑗𝑘 − ത𝑋𝑗)

𝑛

ො𝜌𝑖𝑗 =
ො𝜎𝑖𝑗

ො𝜎𝑖𝑖 ො𝜎𝑗𝑗

– Generate such random vectors: Sec 8.5.5
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Specifying Stochastic Processes (1)

• A sequence of input random variables are modeled as being draws 
from the same distribution with autocorrelation between 
themselves

• Autoregressive (AR) processes

– 𝑋𝑖 = 𝜇 + 𝜙1 𝑋𝑖−1 − 𝜇 + 𝜙𝑖 𝑋𝑖−2 − 𝜇 +⋯+ 𝜙𝑝 𝑋𝑖−𝑝 − 𝜇 + 𝜀𝑖

– 𝜙𝑖: constants for Xi's to have a stationary marginal distribution

– 𝜀𝑖: IID r.v.'s with mean 0 and particular variance to control Xi

• Autoregressive moving-average (ARMA) processes
– Xi similar to that of AR, with weighted 𝜀𝑖

• Use linear regression to estimate the unknown parameters

• Xi's generally restricted to have normal distribution
– Use AR processes as "base" for ARTA models
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Specifying Stochastic Processes (2)

• Autoregressive-to-anything (ARTA) processes

– Can exactly match the desired autocorrelation 
structures out to a specified lag p and the desired 
stationary marginal distribution

– Specify a AR process {Zi} with N(0,1) marginal 
distribution

– 𝑋𝑖 = 𝐹−1[Φ 𝑍𝑖 ]

• Φ 𝑍𝑖 has a U(0,1) distribution

• F-1 is the inverse of the desired stationary marginal 
distribution F
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6.11 Selecting a Distribution in the 
Absence of Data

• Some simulation studies

– Not possible to gather data on random variables 
of interest

– Example: if system does not exist in some form

• Approaches

– Triangular-distribution approach

– Beta-distribution approach

– Lognormal-distribution approach

– Weibull-distribution approach
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Triangular-Distribution Approach

• Identify an interval [a,b] such that P(aXb)1

– E.g. time to replace a tire

• Decide the mode: the most likely value for X

• Cons

– [a,b] is subjective

– No long right tail
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Beta-Distribution Approach (1)

• Identify an interval [a,b] such that P(aXb)1

• Assume X has a beta distribution on [a, b] with shape 
parameters 1 and 2

• 𝑓 𝑥 =
𝑥𝛼1−1 1−𝑥 𝛼2−1

𝐵(𝛼1−𝛼2)

0 < x < 1
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Beta-Distribution Approach (2)

• If  little is known about X, or X is equally likely to take 
any value, choose 1 = 2 = 1

• If X models a task time, assume the distribution is 
skewed to the right 2 > 1 > 1

• 𝜇 = 𝑎 +
𝛼1(𝑏−𝑎)

𝛼1+𝛼2
and 𝑚 = 𝑎 +

(𝛼1−1)(𝑏−𝑎)

𝛼1+𝛼2−2

– Note  > m

• ෤𝛼1 =
(𝜇−𝑎)(2𝑚−𝑎−𝑏)

(𝑚−𝜇)(𝑏−𝑎)
෤𝛼2 =

(𝑏−𝜇)෥𝛼1

𝜇−𝑎

• Both approaches may result in large errors
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Lognormal-Distribution Approach (1)

• If Υ ~ 𝑁(𝜇, 𝜎2), 𝑉 = 𝑒Υ ~ 𝐿𝑁(𝜇, 𝜎2)

𝑓 𝑥 =
1

𝑥 2𝜋𝜎2
exp

− ln 𝑥−𝜇 2

2𝜎2
x > 0

• 𝑉 = 𝑒Υ + 𝛾 ~ 𝐿𝑁(𝛾, 𝜇, 𝜎2)

𝑓 𝑥′ =
1

(𝑥′−𝛾) 2𝜋𝜎2
exp

− ln(𝑥′−𝛾)−𝜇
2

2𝜎2
x > 0

– Parameters
• Location: 𝛾

• Scale: 𝑒𝜇

• Shape: 𝜎
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Lognormal-Distribution Approach (2)

• m: mode, xq: q-quantile (100qth percentile) 

• Assume 0 ≤ 𝛾 < 𝑚 < 𝑥𝑞 < ∞

• ෤𝛾: Lowest value of X

• ෤𝜎 =
−𝑧𝑞+ 𝑧𝑞

2−4𝑐

2

– 𝑧𝑞: q-quantile of a N(0,1) random variable

– 𝑐 = ln[
𝑚−෥𝛾

𝑥𝑞−෥𝛾
]

• ෤𝜇 = ln 𝑚 − ෤𝛾 + ෤𝜎 2
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Weibull-Distribution Approach (1)

• 𝑌 ~Weibull 𝛼, 𝛽

𝑓 𝑥 = 𝛼𝛽−𝛼𝑥𝛼−1𝑒
−

𝑥
𝛽

𝛼

• 𝑋 = 𝑌 + 𝛾 ~Weibull 𝛾, 𝛼, 𝛽

𝑓 𝑥′ = 𝛼𝛽−𝛼(𝑥′ − 𝛾)𝛼−1𝑒
−

𝑥′−𝛾
𝛽

𝛼
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Weibull-Distribution Approach (2)
• m: mode, xq: q-quantile (100qth percentile) 

• Assume 0 ≤ 𝛾 < 𝑚 < 𝑥𝑞 < ∞

• Estimate  by solving

𝑚 − 𝛾

𝑥𝑞 − 𝛾
=

𝛼 − 1

𝛼 ln
1

1 − 𝑞

1
𝛼

– Use Newton's method

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

• Estimate 

෨𝛽 =
𝑚 − 𝛾

1 −
1
෤𝛼

1
෥𝛼
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6.12 Models of Arrival Processes

• Poisson process where the inter-arrival times 
are IID

• Nonstationary Poisson process where the 
arrival rate varies with time

• Batch arrivals
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Poisson Process (1)

• Event times: 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯

• 𝑁 𝑡 = max{𝑖: 𝑡𝑖 ≤ 𝑡}: number of events to occur at 
or before time t

• Poisson process

– Most commonly used model for arrival process of 
customers to a queuing system

– Requirements
• Customers arrive one at a time

• Number of arrivals does not depend on the number of arrivals in 
the earlier time interval
– 𝑁 𝑡 + 𝑠 −𝑁 𝑡 is independent of {𝑁 𝑢 , 0 ≤ 𝑢 ≤ 𝑡)

• Number of arrivals does not depend on time of day
– 𝑁 𝑡 + 𝑠 −𝑁 𝑡 is independent of t for all t,s  0
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Poisson Process (2)

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is a Poisson random variable

𝑃 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 = 𝑘 = 𝑃 𝑁 𝑠 = 𝑘 =
𝑒−𝜆𝑠 𝜆𝑠 𝑘

𝑘!
k = 0,1,2, … and t,s  0

𝐸 𝑁 𝑠 = 𝜆𝑠, 𝐸 𝑁 1 = 𝜆 (arrival rate)

• Inter-arrival times are IID exponential random 

variables with mean 
1

𝜆

– Vice versa
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Nonstationary Poisson Process
• Requirements

– Customers arrive one at a time

– Number of arrivals does not depend on the number of arrivals in the 
earlier time interval

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is independent of {𝑁 𝑢 , 0 ≤ 𝑢 ≤ 𝑡)

• Arrival rate is allowed to be a function of time: 𝜆(𝑡)
– Expectation function: Λ 𝑡 = 𝐸 𝑁 𝑡

– Rate function: 𝜆 𝑡 =
𝑑

𝑑𝑡
Λ 𝑡

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is a Poisson random variable

𝑃 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 = 𝑘 =
𝑒−𝑏(𝑡,𝑠) 𝑏(𝑡, 𝑠) 𝑘

𝑘!
k = 0,1,2, … and t,s  0

𝑏 𝑡, 𝑠 = Λ 𝑡 + 𝑠 − Λ 𝑡 = න
𝑡

𝑡+𝑠

𝜆 𝑦 𝑑𝑦
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Example of Estimating 𝜆(𝑡)

• Customer arrival times are collected for a 
xerographic copy shop between 11AM and 
1PM for 8 days

• Divide the 2 hours into 12 10-minute 
intervals
– May need to try other widths to have not too 

ragged and not too smooth plots

• Calculate the average number of arrivals in 
the intervals over the 8 days

• Divide the average number of arrivals by 
10 minutes to obtain the estimate of the 
arrival rate for a particular interval

130



Jiang Li, Ph.D., EECS

Batch Arrivals

• Appropriate when customers arrive in groups

• Compound Poisson process

• 𝑁 𝑡 is the number of batches instead of the number 
of customers

• 𝑋 𝑡 is the total number of individual customers to 
arrive by time t

– 𝑋 𝑡 = σ1
𝑁(𝑡)

𝐵𝑖 for 𝑡 ≥ 0

– 𝐵𝑖's: IID random variables, numbers of customers in the i-
th batch, 
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6.13 Assessing the Homogeneity of 
Different Data Sets

• Sometimes analysts collect different data sets and 
would like to know if they are homogeneous

– If homogeneous, data can be merged

– Otherwise different distribution is needed for each set

– E.g. bank service time of different days, message sizes 
received by different computer

• Kruskal-Wallis hypothesis test for homogeneity

– Compute the K-W test statistic 

– No assumptions made about the distributions

– No two data values are the same
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Kruskal-Wallis Test
• Sample sets sized n1, n2, …, nk (σ𝑖=1

𝑘 𝑛𝑖 = 𝑛)
– Xij: j-th sample in i-th set

– R(Xij): the rank assigned to among Xij all samples

– 𝑅𝑖 = σ
𝑗=1
𝑛𝑖 𝑅 𝑋𝑖𝑗

• Null hypothesis
– H0: All the population distribution functions are identical

• Alternative hypothesis
– H1: At least one of the populations tends to yield larger observations 

than at least one of the other populations

• K-W test statistic 𝑇 =
12

𝑛 𝑛+1
σ𝑖=1
𝑘 𝑅𝑖

2

𝑛𝑖
− 3(𝑛 + 1)

• Reject H0 at level  if 𝑇 > 𝜒𝑘−1,1−𝛼
2

– 𝜒𝑘−1,1−𝛼
2 : upper 1 –  critical value for a chi-square distribution with k – 1 d.f.
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