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Chapter 6

Selecting Input Probability 
Distributions

Based on the slides provided with the textbook
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6.1 Introduction

• Almost all real-world systems contain randomness 
that needs to represented in models
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Sources of randomness for common simulation applications
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Simulation Data Set Examples (1)
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Ship loading times in daysInterarrival times in minutes to a 

drive-up bank
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Simulation Data Set Examples (2)
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Machine processing time for an

automotive manufacturer

Longer right tail (positive skewness)

Minimum  25 minutes

Scaled number of yards of paper on

1000 large rolls of paper used to make

facial or bathroom tissue

Longer left tail (negative skewness)

None is symmetric like a normal distribution,

while the latter is used widely.
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Impact of Using Incorrect Distributions

• Example:

– A single-server queueing system has exponential 
interarrival times with a mean of 1 minute. 
Service time distribution is best fit by Weibull.
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Has the same general shape as Weibull but has a "thicker" right tail
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Processes for Selecting Distributions

• Use data values themselves directly in the 
simulation (trace-drive simulation)

– Cons

• Can only reproduce what has happened

• Seldom enough data to run all the desired simulations

– Pros

• Good for use if modeling randomness is hard

• Recommended for model validation
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Processes for Selecting Distributions

• Define an empirical distribution function from 
the data values

– Pros

• Avoid the shortcomings of using real data values

– Cons

• Impossible to generate values outside the range of the 
observed data, if used in the usual way

• Cumbersome to represent a large set of data values
– 2n numbers stored for n data values
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Processes for Selecting Distributions

• Fit a theoretical distribution to the data

– Perform hypothesis test to determine the goodness of fit

– Pros
• "Smooth" data vs. irregular data from empirical distribution

• Compact way of representing data values

• Easy to change by tuning parameters

– Cons
• No fit for the observed data

– Data are a mixture of multiple heterogeneous populations

– Not enough data values

• Arbitrarily large values can be generated

– Truncate the distribution
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6.2 Useful Probability Distributions

• For a given family of continuous distributions

– There are several ways to parameterize the probability 
distribution

• Three basic types of parameters

– Location parameter
• Midpoint or lower endpoint of the distribution's range 

– Scale parameter
• Scale of the measurement of the values in the distribution's rnage

– Shape parameter
• Alters a distribution's properties more fundamentally

• A distribution may have from 0 to 2 shape parameters

9
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Useful Continuous Distributions (1)

• Uniform U(a,b)

– Used as a "first" model for a 
quantity felt to randomly 
varying between a and b, 

but little else is known

– U(0,1) is essential in generating 
random values from all other 
distributions

– U(0,1) is a special case of the 
beta distribution

10

Scale parameter: b - a
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Useful Continuous Distributions (2)

• Exponential expo()

– Used for interarrival times of 
"customers" to a system that occur 
at a constant average rate (), time 
to failure of a piece of equipment 

– A special case of both gamma and 
Weibull distributions

– If X1,X2,…,Xn are IID expo(), X1 + X2+ 
… + Xn ~ gamma(m, ), a.k.a m-
Erlang()

– The only continuous memoryless 
distribution
• P(X > t + s | X > t) = P(X > s)
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Scale parameter  > 0

expo(1)
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Useful Continuous Distributions (3)

• Gamma gamma(,)

– Used for time to complete 
some task, e.g. customer server 
or machine repair

– expo()  gamma(1,)

– Xi ~ gamma(i,)
• X1 + X2+ … + Xn ~ gamma(1 + 2 + 

… + n, ),

• X1 / (X1 + X2) ~ beta(1 , 2)

– X ~ gamma(i,) 

 1/X ~ PT5(,1/)
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Shape param.  > 0

Scale param.  > 0

gamma(,1)
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Useful Continuous Distributions (4)

• Weibull(,)

– Used for time to complete some 
task, time to failure of a piece of 
equipment, or as a rough model in 
the absence of data

– expo()  Weibull (1,)

– X ~ Weibull(,)  X ~ expo()

–  -> , degenerate at 

13

Shape param.  > 0

Scale param.  > 0

Weibull(,1)
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Useful Continuous Distributions (5)

• Normal N(,2)

– Used for errors of various types 
(e.g. the impact point of a bomb), 
quantities that are the sum of a 
large number of other quantities

– Two jointly distributed normal 
r.v. uncorrelated => independent

– Sum of normal distributed r.v. 
also has normal distribution

– If X1,X2,…,Xn ~ N(0,1), X1
2 + X2

2+ … 
+ Xn

2 ~ gamma(n/2, 2)

– X ~ N(,2) => ex ~ LN(,2)

–  -> 0, degenerate at 
14

Location parameter 

Scale parameter  > 0

N(0,1)
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Useful Continuous Distributions (6)

• Lognormal LN(,2)

– Used for time to perform a task, quantities that are the 
product of a large number of other quantities

– X ~ LN(,2)   ln(x) ~ N(,2)

–  -> 0, degenerate at e
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Shape parameter  > 0 

Scale parameter e > 0

LN(0,2)
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Useful Continuous Distributions (7)

• Beta beta(1, 2)

– Used for a random portion (e.g. the proportion of 
defective items in a shipment), time to complete a 
task, or a rough model in the absence of data

– U(0,1)  beta(1,1)

– Xi ~ gamma(i,) => X1 / (X1 + X2) ~ beta(1 , 2)

– X on [0,1] can be scaled to [a,b] by a + (b-a)X

– X ~ beta(1, 2)  1 – X ~ beta(2, 1) 

 X/(1-X) ~ PT6(1, 2, 1) 

– Symmetric about x = ½ if and only if 1 = 2
16
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beta (1, 2)

17

Shape parameters 1> 0,  2> 0
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Useful Continuous Distributions (8)
• Person type V  PT5(,)

– Used for time to perform a task

– Larger spike than lognormal close to x = 0

– Inverted gamma distribution
• X ~ PT5(,1/)  1/X ~ gamma(i,) 

– Mean and variance 

exist only for certain 

values of the shape

parameter

18

Shape param.  > 0

Scale param.  > 0

PT5(,1)
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Useful Continuous Distributions (9)

• Person type VI  PT6(1, 2, )

– Used for time to perform a task

– X ~ PT6(1, 2, 1)  X/(1+X) ~ beta(1, 2)

– X1 ~ gamma(1, ), X2 ~ gamma(2, 1) 

=> X1 / X2 ~ PT6(1, 2, )

– Mean and variance exist only for certain values of 
the shape parameter 2

19
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PT6(1, 2, 1)

20

Shape param. 1, 2 > 0, scale param.  > 0
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Useful Continuous Distributions (10)

• Log-logistic LL(,)

– Used for time to 
perform a task

21

Shape param.  > 0

Scale param.  > 0

LL(,1)
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Useful Continuous Distributions (11)

• Johnson SB JSB(1, 2, a, b)

• X ~ JSB(1, 2, a, b) 

 𝛼1 + 𝛼2𝑙𝑛
𝑋−𝑎

𝑏−𝑋
~ N(0,1)

• pdf skewed to 
left/symmetric/right for 1 > 
0, = 0, < 0

22

Location param. a

Scale param. b – a > 0

Shape param. 2 > 0, 1

JSB(1, 2, 0, 1)
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Useful Continuous Distributions (12)
• Johnson SU JSU(1, 2, γ, )

• X ~ JSU(1, 2, γ, ) 

 𝛼1 + 𝛼2𝑙𝑛
𝑋−𝛾

𝛽
+

𝑋−𝛾

𝛽

2
+ 1 ~ N(0,1)

• pdf skewed to left/symmetric/right for 1 > 0, = 0, < 0

23JSU(1, 2, 0, 1)

Location 

param. γ

Scale param. 

 > 0

Shape param.

2 > 0, 1
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Useful Continuous Distributions (13)

• Triangular triang(a,b,m)

– Used as a rough model in the absence of data

– m -> b: right triangular, m -> a: left triangular

– triang(a,b,m) (m -> a or m-> b) are special cases of the beta 
distribution

24

Location param. a

Scale param. b – a > 0

Shape param. m



Jiang Li, Ph.D., EECS

Continuous Distribution Use Summary

• Time to complete a tasks

– Gamma, Weibull, lognormal, Pearson type V, 
Pearson type VI, Log-logistic 

25
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Continuous Distribution Use Summary
• Rough model in the absence of data

– Weibull, lognormal, beta, triangular

26
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Useful Discrete Distributions (1)

• Bernoulli(p)

– Used to generate some 
other discrete r.v.

• If Xi ~ Bernoulli(p), X1 + 
X2 + … + Xn ~ 
Binomial(n, p)

• A special case of 
Binomial(1, p)

• Number of failures 
before the first success 
~ geom(p)

27
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Useful Discrete Distributions (2)

• Discrete Uniform DU(I,j)

– DU(0,1) is the same as Bernoulli(0.5)

28
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Useful Discrete Distributions (3)

• Binomial bin(t,p)

– Number of successes in t independent Bernoulli trials with 
probability p of success

• If Xi ~ bin(ti,p), X1 + X2 + … + Xn ~ bin(t1+t2+…+tn, p)

• p = 0.5 

bin(t,p) is symmetric 

• X ~ bin(t,p) 

 t – x ~ bin(t, 1-p)

29
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Useful Discrete Distributions (4)

• Geometric   geom(p)
– Number of failures before the first success 

in a sequence of independent Bernoulli 
trials with probability p of success

– Discrete analog of the expo. distribution, 
also memoryless

– Model number of items inspected before 
seeing the first defective item, number of 
items in a batch of random size, number of 
items demanded from an inventory

– Yi ~ Bernoulli(p), X = min{i:Yi=1} = 1, X ~ 
geom(p)

– Xi ~ geom(p), X1 + X2 + … + Xn ~ negbin(n,p)

30
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Useful Discrete Distributions (5)

• Negative binomial  
negbin(s,p)

– Number of failures before the 
s-th success in Bernoulli trials

– Model number of good items 
inspected before seeing the s-
th defection, # items in a 
batch of random size, # items 
demanded from an inventory

– Xi ~ negbin(si, p), X1 + X2 + … + 
Xn ~ negbin(s1+s2 + … + sn,p)

31
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Useful Discrete Distributions (6)

• Poisson()
– Number of events in an interval of time when the events are occurring 

at a constant rate

– Model # items in a batch of random size, # items demanded from an 
inventory

– Yi IID, 𝑋 = 𝑚𝑎𝑥 𝑖: σ𝑗=1
𝑖 𝑌𝑗 ≤1 ,

X ~ Possion()  Yi ~ expo(1/), 

– Yi IID, 𝑋′ = 𝑚𝑎𝑥 𝑖: σ𝑗=1
𝑖 𝑌𝑗 ≤𝜆 , 

X' ~ Possion()  Yi ~ expo(1)

– Xi ~ Poisson(i), X1 + X2 + … + Xn

~ Possion (1 + 2 + … + n)

32
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Empirical Distributions (1)
• For continuous r.v.

– Have individual original sample values

– Sort the samples into increasing order

– 𝐹 𝑥 = ൞

0
𝑖−1

𝑛−1
+

𝑥−𝑋(𝑖)

(𝑛−1)(𝑋 𝑖+1 −𝑋 𝑖 )

1

if 𝑥 < 𝑋(𝑖)
if 𝑋(𝑖) ≤ 𝑥 < 𝑋 𝑖+1 for 𝑖 = 1,2,… , 𝑛 − 1

if 𝑋(𝑛) ≤ 𝑥

– Look at the r.v. as discrete uniform

– Use uniform dist. within each interval

– Con

• Random values generated

are within X(1) and X(n)

• The mean of F(x)  ത𝑋(𝑛)

33

Continuous, piecewise-linear empirical distribution 

function from original data
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Empirical Distributions

• For continuous r.v. (cont'd)
– Have group data

• The number of samples in each 

of several specified intervals

[a0,a1), [a1,a2), …, [ak-1, ak)

• Total number: n

• jth interval contains nj

observations

– G(a0) = 0, G(aj) = (n1+n2+…+nj)/n (for 0 < j  k)

– 𝐹 𝑥 =

൞

0

𝐺 𝑎𝑗−1 +
𝑥−𝑎𝑗−1

𝑎𝑗−𝑎𝑗−1
[𝐺 𝑎𝑗 − 𝐺 𝑎𝑗−1 ]

1

if 𝑥 < 𝑎0
if 𝑎𝑗−1 ≤ 𝑥 < 𝑎𝑗 for 0 < 𝑗 ≤ 𝑘

if 𝑎𝑛 ≤ 𝑥

34
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Solve the Bound Problem

• Can append an expo. dist. to the right side

35
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Empirical Distributions (3)

• For discrete r.v.

– Have individual original sample values

• For each possible value x, an empirical mass function is 
the proportion of the samples of that value

– Have group data

• Define a mass function such that the sum of the p(x)'s 
over all possible values of x in an interval is equal to the 
proportion of the samples in that interval

• Individual p(x)'s can be allocated arbitrarily

36
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6.3 Techniques for Verifying 
Sample Independence

• A key assumption by many statistical 
techniques

– Individual observations represent independent 
samples from an underlying distribution

• An example of non-independent data

– Hourly samples of temperature from a specific 
city, starting at noon

• Adjacent sample values will be positively correlated

37
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Techniques for Verifying Sample 
Independence

• Graphical techniques

– Correlation plot, scatter diagram

38

100 independent observations from an expo. dist. with a mean of 1
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Techniques for Verifying Sample 
Independence

• Graphical techniques (cont'd)

– Correlation plot, scatter diagram

39

100 delays in queue from M/M/1 with  = 0.8
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Techniques for Verifying Sample 
Independence (cont'd)

• Rank von Neumann test

– Requires there be no “ties” (equal values) in the 
data

– This requirement generally will not be met for 
discrete data

• Run the test

– Sec. 7.4.1

40
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6.4 Activity I: Hypothesizing 
Families of Distributions

• Process of determining appropriate general families of 
distributions, based on their shape
– Without concern for parameter values

• Prior knowledge can sometimes be used
– E.g. customers arrive one at a time at a constant rate => IID expo.

– E.g. Service time can't use normal dist. as it must be positive

– E.g. Proportion of defective items can't be gamma as proportion must 
be in [0, 1]

• In practice, hypothesizing a distribution family is somewhat 
less structured

41
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Summary Statistics (1)

42
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Summary Statistics (2)

• Can be used to suggest an appropriate distribution 
family

• If ത𝑋(𝑛) ≈ 𝑋0.5(𝑛), the underlying distribution may 
be symmetric

• ෞ𝑐𝑣 (𝑛) ≈ 1, the underlying distribution may be 
exponential

• For gamma or Weibull dist., ෞ𝑐𝑣 𝑛 > 1 / ≈ 1 / <
1 for shape parameter   < 1 / =1 / >1

43
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Summary Statistics (3)

• ෞ𝑐𝑣 𝑛 > 1, the underlying distribution has the following 
shape, it'd better be modelled by lognormal
– Lognormal has this shape and cv can be any positive value

– Gamma and Weibull has this shape when  > 1  and cv < 1

• cv not useful for other distributions

44
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Summary Statistics (4)

• Lexis ratio = 1, < 1, > 1, distribution may be 
Poisson, binomial, and negative binomial 
respectively

• Estimated skewness can be used to ascertain 
the shape of the underlying distribution

– > 0, skewed to the right

• Many distributions in practice are

– < 0, skewed to the left

45
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Histogram for Continuous Data Set (1)

• A graphical estimate of the plot of the PDF 
corresponding to data

• Split the range of data values to multiple disjoint 
adjacent intervals [bi-1, bi) (i = 1…k) of the same 
width

– May need to remove extremely large or small values

– Height of the bar of an interval is the proportion of the 
data values in the interval

• Compare the basis of shape

– Ignore location and scale

46
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• ℎ 𝑥 = ቐ
0
ℎ𝑗
0

if 𝑥 < 𝑏0
if 𝑏𝑗−1 ≤ 𝑥 < 𝑏𝑗
if 𝑏𝑘 ≤ 𝑥

• 𝑃 𝑏𝑗−1 ≤ 𝑋 < 𝑏𝑗 = 𝑏𝑗−1
𝑏_𝑗

𝑓 𝑥 𝑑𝑥 = Δ𝑏𝑓 𝑦 ,

𝑦 ∈ 𝑏𝑗−1, 𝑏𝑗

• ℎ 𝑦 ≈ Δ𝑏𝑓 𝑦 , ∴ ℎ 𝑦 ∝ 𝑓(𝑦)

47

Histogram for Continuous Data Set (2)
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• How many intervals?

– No definite guide

– Struge's rule: 𝑘 = 1 + log2 𝑛

• Not very useful

– Try multiple values and choose the smallest one 
giving a "smooth" histogram

• Too many intervals => hj's vary too much

• Too few intervals => underlying density is masked

48

Histogram for Continuous Data Set (3)
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• No need for intervals

• Plot vertical bars of height hj vs xj

– For each possible value xj, hj is the proportion of 
the sample values = xj

– hj is an unbiased estimator of p(xj) (p(x) is the true 
PMF)

49

Histogram for Discrete Data Set (1)
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Histogram with Several Local Modes

• Split the data into two cases

– pj being the proportion of observations for case j

• Overall  PDF

– 𝑓 𝑥 = 𝑝1𝑓1 𝑥 + 𝑝2𝑓2(𝑥)

50
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Quantile Summaries

• Useful for determining whether the distribution is 
symmetric or skewed right or left

• q-quantile of F(x): xq

– 0 < F(x) < 1,  continuous and strictly increasing

– For 0 < q < 1, F(xq) = q

• If the underlying distribution is symmetric, the four 
midpoints should be about the same

51

Estimates of quantiles
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Drive-up Banking Example (1)

• 220 car arrived during 90 minutes and thus 
219 interarrival times

• Hypothesize the distribution family of 
interarrival times

– Cars arrive one at a time -> independent 

– Number of cars arriving in every 15 minutes are 
about the same

– Exponential interarrival times

52
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Drive-up Banking Example (2)

• To substantiate the 
hypothesis

– ത𝑋 219 = 0.399 >
0.270 = ො𝑥0.5

– ො𝑣 219 = 1.478
• Underlying distribution is 

probably skewed to the right

– ෞ𝑐𝑣 219 = 0.953
• Theoretical value for expo. 

dist. is 1

53
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Drive-up Banking Example (3)

• Quantile summary and box plot

54

Quantile Depth Sample Value(s) Midpoint

Median 110 0.27 0.270

Quartiles 55.5 0.100 0.545 0.323

Octiles 28 0.050 0.870 0.460

Extremes 1 0.010 1.960 0.985
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Drive-up Banking Example (4)

55

Δb=0.050 Δb=0.075
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Drive-up Banking Example (5)

• Sturge's rule gives Δb=0.250

56

Δb=0.100
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Inventory Demand Example (1)

• 156 observations on 
number of items 
demanded in a week 
from an inventory over 
3 years

57
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Inventory Demand Example (2)

• Lexis ratio Ƹ𝜏 156 = 2.795

– Binomial and Poisson not likely

• Skewness ො𝑣 156 = 1.687

– Discrete uniform not likely

• Geometric or negative binomial?

– Histogram matches the former better

58
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6.5 Activity II: Estimating Parameters

• Need to specify parameter values to completely 
specify the distribution

• Estimator

– Numerical function of the data

– Maximum-likelihood estimators (MLEs) considered here

• Desirable statistical properties of MLEs

– Unique

– 𝐸 𝜃 = 𝜃 as 𝑛 → ∞

– Invariant

• MLE of ℎ 𝜃 is ℎ መ𝜃

– Asymptotically normally distributed

– Strongly consistent    lim
𝑛→∞

𝜃 = 𝜃 (w.p. 1)

59
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Maximum-likelihood Estimators

• Given data Xi (i = 1, 2, ..., n), likelihood 
function

– Discrete (PMF: 𝑝𝜃 𝑥 )

𝐿 𝜃 = 𝑝𝜃 𝑋1 𝑝𝜃 𝑋2 …𝑝𝜃 𝑋𝑛
– Continuous (PDF: 𝑓𝑝𝜃 𝑥 )

𝐿 𝜃 = 𝑓𝜃 𝑋1 𝑓𝜃 𝑋2 …𝑓𝜃 𝑋𝑛

• Find 𝜃 that maximizes 𝐿 𝜃

60
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MLE Example – Expo. Dist. (1)

• Expo. dist. 𝑓𝛽 𝑥 =
1

𝛽
𝑒
−
𝑥

𝛽 for x >= 0

• Likelihood function

𝐿 𝛽 =
1

𝛽
𝑒
−
𝑋1
𝛽
1

𝛽
𝑒
−
𝑋2
𝛽 …

1

𝛽
𝑒
−
𝑋𝑛
𝛽

= 𝛽−𝑛 exp(−
1

𝛽


𝑖=1

𝑛

𝑋𝑖)

• Log-likelihood function

𝑙 𝛽 = 𝑙𝑛𝐿 𝛽 = −𝑛𝑙𝑛 𝛽 −
1

𝛽


𝑖=1

𝑛

𝑋𝑖
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MLE Example – Expo. Dist. (2)

𝑑𝑙

𝑑𝛽
= −

𝑛

𝛽
+

1

𝛽2


𝑖=1

𝑛

𝑋𝑖 = 0

𝛽 =
σ𝑖=1
𝑛 𝑋𝑖
𝑛

= ത𝑋(𝑛)

𝑑𝑙2

𝑑𝛽2
=

𝑛

𝛽2
−

2

𝛽3


𝑖=1

𝑛

𝑋𝑖 < 0 when 𝛽 = ത𝑋(𝑛)
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MLE Example – Geometric Dist.

• PMF: 𝑝𝑝 𝑥 = 𝑝 1 − 𝑝 𝑥 for x = 0,1, …

• Likelihood function

𝐿 𝑝 = 𝑝𝑛 1 − 𝑝 σ𝑖=1
𝑛 𝑋𝑖

• Log-likelihood function

𝑙 𝑝 = 𝑙𝑛𝐿 𝑝 = 𝑛𝑙𝑛𝑝 +
𝑖=1

𝑛

𝑋𝑖ln(1 − 𝑝)

𝑑𝑙

𝑑𝑝
=
𝑛

𝑝
−
σ𝑖=1
𝑛 𝑋𝑖
1 − 𝑝

= 0

𝑝 =
1

ത𝑋 𝑛 + 1
𝑑𝑙2

𝑑𝑝2
= −

𝑛

𝑝2
−

σ𝑖=1
𝑛 𝑋𝑖
1 − 𝑝 2

< 0
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Confidence Interval of Parameters 

• 𝑛 መ𝜃 − 𝜃 → 𝑁 0, 𝛿 𝜃

𝛿 𝜃 = −
𝑛

𝐸
𝑑2𝑙
𝑑𝜃2

=> 
𝜃−𝜃

𝛿 𝜃

𝑛

→ 𝑁 0,1

• 100(1-) percent confidence interval

መ𝜃 ± 𝑍
1−

𝛼
2

𝛿 𝜃

𝑛
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Parameter C.I. Example

• Inventory demand example

• 90% confidence interval of p of Geometric 
distribution

𝐸
𝑑𝑙2

𝑑𝑝2
= −

𝑛

𝑝2
−

𝑛 1 − 𝑝
𝑝

1 − 𝑝 2
= −

𝑛

𝑝2 1 − 𝑝

𝛿 𝑝 = 𝑝2 1 − 𝑝

Ƹ𝑝 ± 1.645
Ƹ𝑝2 1 − Ƹ𝑝

𝑛
= 0.346 ± 0.037
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Sensitivity to Parameters

• Run simulations for the parameters set at the 
lower endpoint/center/upper endpoint of the 
confidence interval

• Check if the performance measure varies 
much

– If yes, sensitive to parameters

• Need  better parameter estimate

• Usually entail collecting more data
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MLE of Multiple Parameters

• E.g. for gamma distribution

𝐿 𝛼, 𝛽 =
𝛽−𝑛𝛼 ς𝑖=1

𝑛 𝑋𝑖
𝛼−1𝑒𝑥𝑝 −

1
𝛽
σ𝑖=1
𝑛 𝑋𝑖

Γ 𝛼
𝑛

𝑙 𝛼, 𝛽 = ln 𝐿 𝛼, 𝛽

Solve 
𝜕𝑙

𝜕𝛼
= 0 and 

𝜕𝑙

𝜕𝛽
= 0 simultaneously

Or,

𝑇 = ln ത𝑋 𝑛 −
𝑖=1

𝑛
ln 𝑋𝑖
𝑛

−1

Look up Table 6.21
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Finding MLE

• Generally not as simple as the examples

• Numerical methods must be used in many 
cases
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Input-model Uncertainty

• Model uncertainty

– Not sure about distribution family for input

• Parameter uncertainty

– Unsure about distribution parameters

• A confidence interval for a simulation 
performance measure would be ideal

– Take into account both sampling variability of the 
simulation model (Ch. 9) and input model 
uncertainty
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6.6 Activity III: Determining How 
Representative the Fitted Distributions Are

• None of the fitted distributions will be exactly 
correct

– Goal: accurate enough for intended purposes of 
the model

• Heuristic procedures

• Goodness-of-fit tests
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Heuristic Procedures (1)

• Density-histogram plots and frequency comparisons

• For continuous data

– Histogram intervals [b0,b1), [b1,b2), … , [bk-1,bk)

– Calculate 𝑟𝑗 = 
𝑏𝑗−1

𝑏𝑗 መ𝑓 𝑥 𝑑𝑥

– Plot both hj and rj in the jth histogram interval for j=1,2,…,k

• For discrete data

– Calculate 𝑟𝑗 = Ƹ𝑝 𝑥𝑗

– Plot both hj and rj versus xj for all relevant values of xj
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Density-Histogram Plot Example

• Drive-up Banking Example

• Hypothesized an expo. distribution, MLE መ𝛽 = 0.399

መ𝑓 𝑥 = ൝2.506𝑒
−

𝑥
0.399 if 𝑥 ≥ 0

0 otherwise
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Frequency Comparison Example
• Inventory demand example

• Hypothesized a geometric distribution, MLE Ƹ𝑝 =
0.346

Ƹ𝑝 𝑥 = ቊ
0.346 0.654 𝑥 if 𝑥 = 0,1,2, …
0 otherwise

𝑟𝑗 = Ƹ𝑝 𝑥𝑗 = Ƹ𝑝 𝑗 − 1

for j = 1,2, …, 12
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Heuristic Procedures (2)

• Distribution-function-differences plots

– A comparison of the individual probabilities of the fitted 
distribution and of that of the underlying distribution 
(approx. by empirical distribution)

– 𝐹𝑛 𝑥 =
number of 𝑋𝑖

′𝑠≤𝑥

𝑛

– Not easy to eyeball for differences or similarities in the S-
shaped curves of 𝐹(𝑥) and 𝐹𝑛 𝑥

– Instead, plot the differences between 𝐹(𝑥) and 𝐹𝑛 𝑥
over the range of the data
• If perfect fit, should be on the x axis
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Distribution-function-differences 
Plot Examples
• Drive-up Banking 

Example

• Inventory demand 
example
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Heuristic Procedures (3)
• Probability plots

• New empirical distribution ෩𝐹𝑛 𝑋 𝑖 =
𝑖−0.5

𝑛

76

• Quantile-quantile (Q-Q) plot
– For continuous data sets

– The qi-quantile of the fitted 
distribution function 𝐹(𝑥) vs. the qi-
quantile of ෪𝐹𝑛(𝑥)

– 𝑞𝑖 =
𝑖−0.5

𝑛

– If the two distributions are the same 
and the sample size is large, the plot 
will be approx. the 45o line.

– For small to moderate sample sizes, 
it may deviate from the 45o line.

– Requires 𝐹−1(𝑥) , may need 
numerical approximation



Jiang Li, Ph.D., EECS

Heuristic Procedures (3) (cont'd)
77

• Probability-probability (P-P) plot
– For continuous and discrete data 

sets

– Plot 𝐹(𝑝) vs. ෪𝐹𝑛(𝑝) for p values on 
the abscissa 

– If the two distributions are the 
same and the sample size is large, 
the plot will be approx. the 45o line.

– For small to moderate sample sizes, 
it may deviate from the 45o line.
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Heuristic Procedures (3) (cont'd)

• Q-Q plots amplify differences between the 
tails of the two distributions
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Heuristic Procedures (3) (cont'd)

• P-P plots amplify differences between the 
middle of the two distributions
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Heuristic Procedures (3) (cont'd)

• Ties in sample values

• Let Y1,Y2,…,Yl be the distinct values in 
X1,X2,…,Xn

෨𝐹𝑛 𝑌𝑖 = 𝑞𝑖 = proportion of 𝑋𝑗
′𝑠 ≤ 𝑌𝑖 −

0.5

𝑛
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Q-Q Plot and P-P Plot Example

• Drive-up Banking Example
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P-P Plot Example

• Inventory demand example

82



Jiang Li, Ph.D., EECS

Activity III: Determining How 
Representative the Fitted Distributions Are

• Goodness-of-fit tests

– Statistical hypothesis test

– Used to assess whether the observations are an 
independent sample from a particular distribution with 
distribution function 𝐹

– Test null hypothesis H0: The Xi's are IID random variables 
with distribution function 𝐹
• For small to moderate sample sizes

– Not sensitive to subtle disagreements, rather for detecting gross 
differences

• For large sample sizes

– H0 virtually never exactly true

– We just need a "good enough" distribution
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Examples of Goodness-of-Fit Tests

• Chi-square tests

• Kolmogorov-Smirnov tests

• Anderson-Darling tests

• Poisson-Process tests
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Chi-Square Tests (1)

• A more formal comparison between data histogram and the 
fitted distribution

• Divide the entire range of the fitted distribution into k 
adjacent intervals [a0,a1), [a1,a2), … , [ak-1,ak) (ak/a0 may be +/-
∞)
– Nj = number of Xi's in [aj-1,aj]    (j = 1,2,…,k)

– Continuous case: 𝑝𝑗 = 𝑎𝑗−1
𝑎𝑗 መ𝑓 𝑥 𝑑𝑥

– Discrete case: 𝑝𝑗 = σ𝑎𝑗−1≤𝑥𝑖≤𝑎𝑗 Ƹ𝑝(𝑥𝑖)

– Test statistics: 𝜒2 = σ𝑗=1
𝑘 𝑁𝑗−𝑛𝑝𝑗

2

𝑛𝑝𝑗

• npj: the expected number of samples in [aj-1,aj] 

• Reject H0 if 𝜒2 is too large.
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Chi-Square Tests (2)

• Case 1: All parameters of the fitted distribution are known 
(e.g. in empirical testing of random-number generations)

86

• If H0 is true, 𝜒2 converges (as n 
→ ∞)  to a chi-square 
distribution with k-1 degree of 
freedom (df), the same as 
gamma[(k-1)/2,2]

• A test with approx. level ⍺

rejects H0 if  𝜒2 > 𝜒𝑘−1,1−𝛼
2

(look up Table T.2)
– Valid (i.e. of level ⍺) 

asymptotically as n → ∞
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Chi-Square Tests (3)

• Case 2: Estimate m (>= 1) parameters of the fitted distribution 
by MLE

87

• If H0 is true, 𝜒2 converges (as 
n → ∞)  to a distribution lying 
between chi-square 
distribution with k – 1 and k –
m – 1df 

• Critical point 𝜒1−𝛼
2

• Reject H0 if 𝜒2 > 𝜒𝑘−1,1−𝛼
2

• Do not reject H0 if 

𝜒2 < 𝜒𝑘−𝑚−1,1−𝛼
2
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Chi-Square Tests (4)

• Reject H0 only if 𝜒2 > 𝜒𝑘−1,1−𝛼
2

– Type I error (rejecting a true H0) 
probability is no larger than ⍺

– At the cost of loss of power 
(probability of rejecting a false 
H0) 

– Usually m <= 2, k large, 

difference between 𝜒𝑘−𝑚−1,1−𝛼
2

and 𝜒𝑘−1,1−𝛼
2 won't be too large

88

• What if 𝜒𝑘−𝑚−1,1−𝛼
2 ≤ 𝜒2 ≤ 𝜒𝑘−1,1−𝛼

2 ?
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Chi-Square Tests (5)

• Choosing the number and size of the intervals

– No definitive guideline

– Recommendation: guarantee a valid and unbiases
test

• k >= 3

• Equiprobable approach: p1=p2=…=pk (approx. for 
discrete data)

• npj >= 5 (j = 1,2,…k)

– For the same data set, different ways of having 
intervals may lead to different conclusions
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Chi-Square Test Example 1
• Drive-up Banking Example

• n = 219

• 𝐹 𝑥 = 1 − 𝑒−
𝑥

0.399 for x >= 
0

• k = 20 intervals, pj = 1/k = 
0.05, npj = 2190.05=10.950
– Satisfies the guidelines

90

• 𝐹 𝑎𝑗 =
𝑗

20
⇒ 𝑎𝑗 = −0.399 ln 1 −

𝑗

20
, 𝑎0 = 0, 𝑎20 = ∞

– For other continuous distributions, F-1 can be evaluated by numerical 
methods

• 𝜒2=22.188

• 𝜒19,0.90
2 =? 𝜒19,0.75

2 =?
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Chi-Square Test Example 2

• Inventory demand example

• Can only make the pj's roughly equal

• Mode = 0, Ƹ𝑝 0 = 0.346 is the highest value of the mass 
function
– Choice of intervals are limited

• 𝜒2,0.90
2 =?
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Chi-Square Test Example 3

• 856 ship-loading times

• Fitted distribution: log-logistic

• Test at level  = 0.1
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Kolmogorov-Smirnov Tests (1)

• Chi-square tests compare a histogram of the data 
with the fitted distribution

– Difficult to specify the intervals

– Valid only in an asymptotic sense

• K-S tests compare an empirical distribution function 
with the hypothesized one

– No need to group data

– Valid for any sample size

– Tend to be more powerful against many alternative 
distributions
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Kolmogorov-Smirnov Tests (2)

• For discrete data, required critical values must be 
computed using complicated formulas

• The original form is valid only if all the parameters of 
the hypothesized distribution are known and the 
distribution is continuous

– Has been extended to allow for estimation of the 
parameters in normal, lognormal, exponential, Weibull 
and log-logistic

• The original form is often applied for continuous 
distributions with estimated parameters and discrete 
distributions

– Type I error smaller than specified -> loss of power 
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Kolmogorov-Smirnov Tests (3)

• Fitted distribution function 𝐹(𝑥)

• Empirical distribution function

𝐹𝑛 𝑋 𝑖 =
𝑖

𝑛
for i = 1,2,…,n

• Statistic 𝐷𝑛 = sup
𝑥

𝐹𝑛 𝑥 − 𝐹(𝑥)

– sup
𝑥
{A}: the smallest value >= all members of A

– Computation:

• 𝐷𝑛
+ = max

1≤𝑖≤𝑛
{
𝑖

𝑛
− 𝐹 𝑋 𝑖 } , 𝐷𝑛

− = max
1≤𝑖≤𝑛

{ 𝐹 𝑋 𝑖 −
𝑖−1

𝑛
}

• 𝐷𝑛 = max{𝐷𝑛
+, 𝐷𝑛

−}

– Reject H0 if Dn exceeds dn,1-⍺

– Critical point dn,1-⍺ depends on 𝐹(𝑥)

95



Jiang Li, Ph.D., EECS

Example of K-S Test Statistic 
Computation

96

Geometric meaning of the K-S test statistic Dn for n = 4
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K-S Tests: Case 1

• Original form

– All parameters known, continuous data

– Dn does not depend on the fitted distribution function

– Adjusted test statistic

𝑛 + 0.12 +
0.11

𝑛
𝐷𝑛, reject H𝑜 if > 𝑐1−𝛼
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K-S Tests: Case 2
• Hypothesized distribution is 𝑁(𝜇, 𝜎2)

– μ, σ2 unknown

• 𝐹 𝑥 = Φ{
𝑥− ത𝑋 𝑛

𝑆2 𝑛
}

– Adjusted test statistic

𝑛 − 0.01 +
0.85

𝑛
𝐷𝑛, reject H𝑜 if > 𝑐′1−𝛼
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K-S Tests: Case 3
• Hypothesized distribution is expo(β)

– β unknown, MLE = ത𝑋(𝑛)

• 𝐹 𝑥 = 1 − 𝑒
−

𝑥
ഥ𝑋 𝑛 for x >= 0

– Adjusted test statistic

𝑛 + 0.26 +
0.5

𝑛
(𝐷𝑛−

0.2

𝑛
), reject H𝑜 if > 𝑐′′1−𝛼
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K-S Tests: Case 4

• Hypothesized distribution is Weibull with , β unknown

• 𝐹 𝑥 = 1 − 𝑒
−

𝑥
𝛽

ෝ𝛼

for x >= 0

– Adjusted test statistic
𝑛𝐷𝑛 reject H𝑜 if > 𝑐1−𝛼

∗
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K-S Tests: Case 5
• Hypothesized distribution is log-logistic with , β 

unknown

• Xi's are the logarithms of the basic data points

• 𝐹 𝑥 = 1 + 𝑒 − 𝑥−ln 𝛽 ෝ𝛼
−1

for -∞<x< ∞

– Adjusted test statistic
𝑛𝐷𝑛 reject H𝑜 if > 𝑐1−𝛼

+
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K-S Test Example

• Drive-up Banking

• 𝐹 𝑥 = 1 − 𝑒−
𝑥

0.399 for x >= 0

• D219 = 0.047

• Adjusted test statistic

𝐷219 −
0.2

219
219 + 0.26 +

0.5

219
= 0.696

• Reject H0 or not?
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6.8 Shifted and Truncated 
Distributions

• Modifying a distribution may provide a better fit in some 
cases

– Example: bank teller cannot serve a customer in less than 30 
seconds
• Shift distribution to the right to disallow values less than 30 seconds

– Shift a distribution to the right by  units: replace x by x -  in PDF

– Exponential distribution original

𝑓 𝑥 =
1

𝛽
𝑒
−
𝑥
𝛽 𝑥 ≥ 0

– Exponential distribution shifted, now has a location param. 𝛾

𝑓 𝑥 =
1

𝛽
𝑒
−
𝑥−𝛾
𝛽 𝑥 ≥ 𝛾
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Param. Estimation with the Added 𝛾

• Finding the MLE for 𝛾 in addition to the MLEs for the 
original parameters may not work

– MLEs for some distribution with 𝛾 are not well defined.

• First estimate 𝛾: 𝛾 =
𝑋 1 𝑋 𝑛 −𝑋 𝑘

2

𝑋 1 +𝑋 𝑛 −2𝑋 𝑘

– k is the smallest integer in {2, 3, …, n – 1} such that X(k) > 
X(1)

• Define 𝑋𝑖
′ = 𝑋𝑖 − 𝛾 ≥ 0 for i = 1,2,…,n

• Find MLEs of the other parameters using 𝑋𝑖
′s. 
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Example

• Unload time of 808 coal trains

• X(1)=3.37, X(2) = 3.68, X(808)=6.32

• ො𝛾 =
𝑋 1 𝑋 808 −𝑋 2

2

𝑋 1 +𝑋 808 −2𝑋 2
= 3.329

• 𝑋𝑖
′ = Xi − 3.329 for i = 1,2,…,808

• MLEs for log-logistic

distribution

ො𝛼 = 7.451, መ𝛽 = 1.271
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Truncate Distributions

• No random values can be larger than b > 0

• If the range of a PDF f is [0, ), define truncated PDF as

𝑓∗ 𝑥 = 𝑓(𝑥)/𝐹(𝑏) for 0  x  b

𝐹 𝑏 = න
0

𝑏

𝑓 𝑥 𝑑𝑥

• Example: truncated exponential dist. for [0, 90]

𝐹 𝑏 = න
0

90 1

𝛽
𝑒
−
𝑥
𝛽𝑑𝑥 = 1 − 𝑒

−
90
𝛽

𝑓∗ 𝑥 =

1
𝛽
𝑒
−
𝑥
𝛽

1 − 𝑒
−
90
𝛽
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6.10 Specifying Multivariate 
Distributions, Correlations, and 

Stochastic Processes

• Random input variables may be statistically 
related to each other

– May form a random vector to be specified by the 
modeler

– Could be a correlation between different random 
input variables

• In a random vector or stochastic process

• With their own individual, or marginal, distributions
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Example Situations

• A maintenance shop with two service stations

– First station inspects, second repairs

– Longer inspection time probably leads to longer 
reparation time -> positive correlation

• A communication system

– Large (small) messages tend to come in groups -> 
positive correlation through several lags

• An inventory system

– Large orders tends to be followed by small orders
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Specifying Multivariate Distributions

• Input random vector X = (X1,X2, … , Xd)T

• R.v.'s within a Xk are correlated

• R.v.'s across Xk's are independent

• Maintenance shop example
𝑋11
𝑋21

,
𝑋12
𝑋22

, … ,
𝑋1𝑛
𝑋2𝑛

• Multivariate (joint) distribution function
𝐹 𝒙 = 𝑃 𝑿 ≤ 𝒙 = 𝑃(𝑋1 ≤ 𝑥1, … , 𝑋𝑑 ≤ 𝑥𝑑)

– Implies marginal distribution

– Embodies relationships between the r.v.'s

• Difficult to estimate the entire multivariate distribution

– Will look at certain useful cases

112



Jiang Li, Ph.D., EECS

Multivariate Normal Distribution

• A springboard to other more useful distributions

𝑓 𝒙 = 2𝜋 −
𝑛
2 𝛴 −

1
2 exp −

𝒙 − 𝝁 𝑇 σ−1(𝒙 − 𝝁)

2

𝛴: the covariance entry with (i,j)th entry 𝜎𝑖𝑗 = 𝜎𝑗𝑖 =

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝛴 : determinant of 𝛴

• Fit to d-dimensional data X1,X2,…,Xn

ෝ𝝁 = ഥ𝑿 = ത𝑋1, ത𝑋2, … , ത𝑋𝑑
𝑇

ො𝜎𝑖𝑗 =
σ𝑘=1
𝑛 (𝑋𝑖𝑘 − ത𝑋𝑖)(𝑋𝑗𝑘 − ത𝑋𝑗)

𝑛
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Multivariate Lognormal Distribution
• X = (X1,X2, … , Xd)T has a multivariate lognormal 

distribution iff Y = (Y1,Y2, … , Yd)T = (ln X1,ln X2, … , ln 
Xd)T has a multivariate normal distribution

𝑋 = 𝑒𝑌1 , 𝑒𝑌2 , … , 𝑒𝑌𝑑 𝑇

𝐸 𝑋𝑖 = 𝑒𝜇𝑖+
𝜎𝑖𝑖
2

𝑉𝑎𝑟 𝑋𝑖 = 𝑒2𝜇𝑖+𝜎𝑖𝑖 𝑒𝜎𝑖𝑖 − 1

𝐶𝑜𝑣 𝑋𝑖, 𝑋𝑗 =
𝑒𝜎𝑖𝑗 − 1

(𝑒𝜎𝑖𝑖 − 1)(𝑒𝜎𝑗𝑗 − 1)

• Fit to data

– Take the natural logarithms of data

– Estimate 𝝁 and 𝛴 for multivariate normal dist.
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Specifying Arbitrary Marginal 
Distributions and Correlations 

• Allow for correlation between various pairs of input 
random variables, while not imposing an overall 
multivariate distribution

– Fit distributions to each of the univariate random variables 
involved

– Estimate correlations

ො𝜎𝑖𝑗 =
σ𝑘=1
𝑛 (𝑋𝑖𝑘 − ത𝑋𝑖)(𝑋𝑗𝑘 − ത𝑋𝑗)

𝑛

ො𝜌𝑖𝑗 =
ො𝜎𝑖𝑗

ො𝜎𝑖𝑖 ො𝜎𝑗𝑗

– Generate such random vectors: Sec 8.5.5

115



Jiang Li, Ph.D., EECS

Specifying Stochastic Processes (1)

• A sequence of input random variables are modeled as being draws 
from the same distribution with autocorrelation between 
themselves

• Autoregressive (AR) processes

– 𝑋𝑖 = 𝜇 + 𝜙1 𝑋𝑖−1 − 𝜇 + 𝜙𝑖 𝑋𝑖−2 − 𝜇 +⋯+ 𝜙𝑝 𝑋𝑖−𝑝 − 𝜇 + 𝜀𝑖

– 𝜙𝑖: constants for Xi's to have a stationary marginal distribution

– 𝜀𝑖: IID r.v.'s with mean 0 and particular variance to control Xi

• Autoregressive moving-average (ARMA) processes
– Xi similar to that of AR, with weighted 𝜀𝑖

• Use linear regression to estimate the unknown parameters

• Xi's generally restricted to have normal distribution
– Use AR processes as "base" for ARTA models
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Specifying Stochastic Processes (2)

• Autoregressive-to-anything (ARTA) processes

– Can exactly match the desired autocorrelation 
structures out to a specified lag p and the desired 
stationary marginal distribution

– Specify a AR process {Zi} with N(0,1) marginal 
distribution

– 𝑋𝑖 = 𝐹−1[Φ 𝑍𝑖 ]

• Φ 𝑍𝑖 has a U(0,1) distribution

• F-1 is the inverse of the desired stationary marginal 
distribution F
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6.11 Selecting a Distribution in the 
Absence of Data

• Some simulation studies

– Not possible to gather data on random variables 
of interest

– Example: if system does not exist in some form

• Approaches

– Triangular-distribution approach

– Beta-distribution approach

– Lognormal-distribution approach

– Weibull-distribution approach
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Triangular-Distribution Approach

• Identify an interval [a,b] such that P(aXb)1

– E.g. time to replace a tire

• Decide the mode: the most likely value for X

• Cons

– [a,b] is subjective

– No long right tail
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Beta-Distribution Approach (1)

• Identify an interval [a,b] such that P(aXb)1

• Assume X has a beta distribution on [a, b] with shape 
parameters 1 and 2

• 𝑓 𝑥 =
𝑥𝛼1−1 1−𝑥 𝛼2−1

𝐵(𝛼1−𝛼2)

0 < x < 1
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Beta-Distribution Approach (2)

• If  little is known about X, or X is equally likely to take 
any value, choose 1 = 2 = 1

• If X models a task time, assume the distribution is 
skewed to the right 2 > 1 > 1

• 𝜇 = 𝑎 +
𝛼1(𝑏−𝑎)

𝛼1+𝛼2
and 𝑚 = 𝑎 +

(𝛼1−1)(𝑏−𝑎)

𝛼1+𝛼2−2

– Note  > m

• 𝛼1 =
(𝜇−𝑎)(2𝑚−𝑎−𝑏)

(𝑚−𝜇)(𝑏−𝑎)
𝛼2 =

(𝑏−𝜇)𝛼1

𝜇−𝑎

• Both approaches may result in large errors
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Lognormal-Distribution Approach (1)

• If Υ ~ 𝑁(𝜇, 𝜎2), 𝑉 = 𝑒Υ ~ 𝐿𝑁(𝜇, 𝜎2)

𝑓 𝑥 =
1

𝑥 2𝜋𝜎2
exp

− ln 𝑥−𝜇 2

2𝜎2
x > 0

• 𝑉 = 𝑒Υ + 𝛾 ~ 𝐿𝑁(𝛾, 𝜇, 𝜎2)

𝑓 𝑥′ =
1

(𝑥′−𝛾) 2𝜋𝜎2
exp

− ln(𝑥′−𝛾)−𝜇
2

2𝜎2
x > 0

– Parameters
• Location: 𝛾

• Scale: 𝑒𝜇

• Shape: 𝜎
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Lognormal-Distribution Approach (2)

• m: mode, xq: q-quantile (100qth percentile) 

• Assume 0 ≤ 𝛾 < 𝑚 < 𝑥𝑞 < ∞

• 𝛾: Lowest value of X

• 𝜎 =
−𝑧𝑞+ 𝑧𝑞

2−4𝑐

2

– 𝑧𝑞: q-quantile of a N(0,1) random variable

– 𝑐 = ln[
𝑚−𝛾

𝑥𝑞−𝛾
]

• 𝜇 = ln 𝑚 − 𝛾 + 𝜎 2
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Weibull-Distribution Approach (1)

• 𝑌 ~Weibull 𝛼, 𝛽

𝑓 𝑥 = 𝛼𝛽−𝛼𝑥𝛼−1𝑒
−

𝑥
𝛽

𝛼

• 𝑋 = 𝑌 + 𝛾 ~Weibull 𝛾, 𝛼, 𝛽

𝑓 𝑥′ = 𝛼𝛽−𝛼(𝑥′ − 𝛾)𝛼−1𝑒
−

𝑥′−𝛾
𝛽

𝛼
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Weibull-Distribution Approach (2)
• m: mode, xq: q-quantile (100qth percentile) 

• Assume 0 ≤ 𝛾 < 𝑚 < 𝑥𝑞 < ∞

• Estimate  by solving

𝑚 − 𝛾

𝑥𝑞 − 𝛾
=

𝛼 − 1

𝛼 ln
1

1 − 𝑞

1
𝛼

– Use Newton's method

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

• Estimate 

෨𝛽 =
𝑚 − 𝛾

1 −
1
𝛼

1
𝛼
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6.12 Models of Arrival Processes

• Poisson process where the inter-arrival times 
are IID

• Nonstationary Poisson process where the 
arrival rate varies with time

• Batch arrivals
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Poisson Process (1)

• Event times: 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯

• 𝑁 𝑡 = max{𝑖: 𝑡𝑖 ≤ 𝑡}: number of events to occur at 
or before time t

• Poisson process

– Most commonly used model for arrival process of 
customers to a queuing system

– Requirements
• Customers arrive one at a time

• Number of arrivals does not depend on the number of arrivals in 
the earlier time interval
– 𝑁 𝑡 + 𝑠 −𝑁 𝑡 is independent of {𝑁 𝑢 , 0 ≤ 𝑢 ≤ 𝑡)

• Number of arrivals does not depend on time of day
– 𝑁 𝑡 + 𝑠 −𝑁 𝑡 is independent of t for all t,s  0
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Poisson Process (2)

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is a Poisson random variable

𝑃 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 = 𝑘 = 𝑃 𝑁 𝑠 = 𝑘 =
𝑒−𝜆𝑠 𝜆𝑠 𝑘

𝑘!
k = 0,1,2, … and t,s  0

𝐸 𝑁 𝑠 = 𝜆𝑠, 𝐸 𝑁 1 = 𝜆 (arrival rate)

• Inter-arrival times are IID exponential random 

variables with mean 
1

𝜆

– Vice versa
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Nonstationary Poisson Process
• Requirements

– Customers arrive one at a time

– Number of arrivals does not depend on the number of arrivals in the 
earlier time interval

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is independent of {𝑁 𝑢 , 0 ≤ 𝑢 ≤ 𝑡)

• Arrival rate is allowed to be a function of time: 𝜆(𝑡)
– Expectation function: Λ 𝑡 = 𝐸 𝑁 𝑡

– Rate function: 𝜆 𝑡 =
𝑑

𝑑𝑡
Λ 𝑡

• 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 is a Poisson random variable

𝑃 𝑁 𝑡 + 𝑠 − 𝑁 𝑡 = 𝑘 =
𝑒−𝑏(𝑡,𝑠) 𝑏(𝑡, 𝑠) 𝑘

𝑘!
k = 0,1,2, … and t,s  0

𝑏 𝑡, 𝑠 = Λ 𝑡 + 𝑠 − Λ 𝑡 = න
𝑡

𝑡+𝑠

𝜆 𝑦 𝑑𝑦
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Example of Estimating 𝜆(𝑡)

• Customer arrival times are collected for a 
xerographic copy shop between 11AM and 
1PM for 8 days

• Divide the 2 hours into 12 10-minute 
intervals
– May need to try other widths to have not too 

ragged and not too smooth plots

• Calculate the average number of arrivals in 
the intervals over the 8 days

• Divide the average number of arrivals by 
10 minutes to obtain the estimate of the 
arrival rate for a particular interval
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Batch Arrivals

• Appropriate when customers arrive in groups

• Compound Poisson process

• 𝑁 𝑡 is the number of batches instead of the number 
of customers

• 𝑋 𝑡 is the total number of individual customers to 
arrive by time t

– 𝑋 𝑡 = σ1
𝑁(𝑡)

𝐵𝑖 for 𝑡 ≥ 0

– 𝐵𝑖's: IID random variables, numbers of customers in the i-
th batch, 
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6.13 Assessing the Homogeneity of 
Different Data Sets

• Sometimes analysts collect different data sets and 
would like to know if they are homogeneous

– If homogeneous, data can be merged

– Otherwise different distribution is needed for each set

– E.g. bank service time of different days, message sizes 
received by different computer

• Kruskal-Wallis hypothesis test for homogeneity

– Compute the K-W test statistic 

– No assumptions made about the distributions

– No two data values are the same
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Kruskal-Wallis Test
• Sample sets sized n1, n2, …, nk (σ𝑖=1

𝑘 𝑛𝑖 = 𝑛)
– Xij: j-th sample in i-th set

– R(Xij): the rank assigned to among Xij all samples

– 𝑅𝑖 = σ
𝑗=1
𝑛𝑖 𝑅 𝑋𝑖𝑗

• Null hypothesis
– H0: All the population distribution functions are identical

• Alternative hypothesis
– H1: At least one of the populations tends to yield larger observations 

than at least one of the other populations

• K-W test statistic 𝑇 =
12

𝑛 𝑛+1
σ𝑖=1
𝑘 𝑅𝑖

2

𝑛𝑖
− 3(𝑛 + 1)

• Reject H0 at level  if 𝑇 > 𝜒𝑘−1,1−𝛼
2

– 𝜒𝑘−1,1−𝛼
2 : upper 1 –  critical value for a chi-square distribution with k – 1 d.f.
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