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Chapter 8

Generating Random Variates

Based on the slides provided with the textbook
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8.1 Introduction

• Assume a distribution has already been 
specified

• What problem is addressed in this chapter?

– How to generate random variates for use in a 
simulation model

• Basic ingredient

– Source of IID U(0,1) random variates

• Statistically reliable U(0,1) random number generator 
must be available
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8.2 General Approaches to 
Generating Random Variates

• Inverse transform for continuous random var.

– Suppose we wish to generate a continuous 
random variate, X

– X has distribution function F that is continuous 
and strictly increasing when F(x) is between zero 
and one

– Algorithm: 

4



Jiang Li, Ph.D., EECS

Inverse Transform for Continuous 
Random Variates
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Inverse Transform for Continuous 
Random Variates Example

• Weibull(,)

• 𝐹 𝑥 = 1 − 𝑒
−

𝑥

𝛽

𝛼

if x > 0

• Generate a Weibull(2,2) random variate
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Inverse Transform for Truncated 
Continuous Random Variates

• 𝑓∗ 𝑥 =
𝑓 𝑥

𝐹 𝑏 −𝐹 𝑎
a  x  b

• Algorithm

– Generate U ~ U(0,1)

– Let 𝑉 = 𝐹 𝑎 + 𝐹 𝑏 − 𝐹 𝑎 𝑈

– Return 𝑋 = 𝐹−1(𝑉)
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Inverse Transform for Continuous 
Random Variates Example

• Weibull(,)

• 𝐹 𝑥 = 1 − 𝑒
−

𝑥

𝛽

𝛼

if x > 0

• Generate a Weibull(2,2) random variate 
truncated between [1,5]
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Inverse Transform Method For 
Discrete Random Variates

• Distribution function F(x) defined by:

• Algorithm:

1. Generate U ~ U(0,1)

2. Determine the smallest positive integer, I such that U ≤ 
F(xI) and return X = XI
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Inverse Transform Method For 
Discrete Random Variates
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Inverse Transform for Continuous 
Random Variates Example

• P(X = 1) = 1/6

• P(X = 2) = 1/3

• P(X = 3) = 1/3

• P(X = 4) = 1/6
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Generalized 
Inverse-Transform Method

• Works for a mixed distribution
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P(X1)=u1'

P(X2)=u2
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Disadvantages

• In the continuous case

– Might not be possible to write a formula for 

F-1(U)

– Numerical methods can be used

• May not be the fastest way
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Composition Technique
• Applies when the distribution function F can be 

expressed as a convex combination of other 
distribution functions

• Assume that for all x, F(x) can be written as

• Composition algorithm

1. Generate a positive random integer J such that: 

2. Return X with distribution function FJ.
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Composition Technique Example

• 𝑓 𝑥 = 0.5𝑒𝑥𝐼 −∞,0 𝑥 + 0.5𝑒−𝑥𝐼 0,∞ 𝑥

– 𝐼𝐴 𝑥 = 1 if 𝑥 ∈ 𝐴, 𝐼𝐴 𝑥 = 0 otherwise

• Steps

– Generate U1 ~ U(0,1)

– If U1  0.5, generate U2 ~ U(0,1) return X = lnU2

– If U1 > 0.5, generate U2 ~ U(0,1) return X = - lnU2
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Convolution Method

• For several important distributions, the desired 
random variable X can be expressed as the sum of 
other IID random variables

– The other random variables (Y) can be generated more 
readily than X

• Convolution algorithm

1. Generate Y1, Y2,…Ym IID each with distribution function G

2. Return X= Y1 +Y2+…Ym
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Convolution Method Example

• The m-Erlang r.v. X with mean  can be 
defined as the sum of m IID exponential r.v.s
with common mean /m

• To generate X

– Generate Y1,Y2,…,Ym as IID exponential with mean 
/m

– Return X = Y1+ Y2 + … + Ym
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