Generating Random Variates

Chapter 8

Based on the slides provided with the textbook

Jiang Li, Ph.D., EECS

8.1 Introduction

- Assume a distribution has already been specified
- What problem is addressed in this chapter?
 - How to generate random variates for use in a simulation model
- Basic ingredient
 - Source of IID U(0,1) random variates
 - Statistically reliable U(0,1) random number generator must be available

8.2 General Approaches to Generating Random Variates

- Inverse transform for continuous random var.
 - Suppose we wish to generate a continuous random variate, X
 - X has distribution function F that is continuous and strictly increasing when F(x) is between zero and one
 - Algorithm:

1. Generate
$$U \sim U(0, 1)$$
.
2. Return $X = F^{-1}(U)$.

Inverse Transform for Continuous Random Variates

Inverse Transform for Continuous Random Variates Example

• Weibull(α , β)

•
$$F(x) = 1 - e^{-(\frac{x}{\beta})^{\alpha}}$$
 if x > 0

• Generate a Weibull(2,2) random variate

Inverse Transform for Truncated Continuous Random Variates

•
$$f^*(x) = \frac{f(x)}{F(b) - F(a)}$$

 $a \le x \le b$

- Algorithm
 - Generate U \sim U(0,1)
 - Let V = F(a) + [F(b) F(a)]U

$$-\operatorname{Return} X = F^{-1}(V)$$

Inverse Transform for Continuous Random Variates Example

• Weibull(α , β)

•
$$F(x) = 1 - e^{-(\frac{x}{\beta})^{\alpha}}$$
 if x > 0

• Generate a Weibull(2,2) random variate truncated between [1,5]

Inverse Transform Method For Discrete Random Variates

• Distribution function *F*(*x*) defined by:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$
$$p(x_i) = P(X = x_i)$$

- Algorithm:
 - 1. Generate *U* ~ *U*(*0*, *1*)
 - 2. Determine the smallest positive integer, I such that $U \le F(x_i)$ and return $X = X_i$

Inverse Transform Method For Discrete Random Variates

Inverse Transform for Continuous Random Variates Example

- P(X = 1) = 1/6
- P(X = 2) = 1/3
- P(X = 3) = 1/3
- P(X = 4) = 1/6

Generalized Inverse-Transform Method

• Works for a mixed distribution

$$X = \min\{x: F(x) \ge U\}$$

Disadvantages

- In the continuous case
 - Might not be possible to write a formula for $F^{-1}(U)$
 - Numerical methods can be used
- May not be the fastest way

Composition Technique

- Applies when the distribution function F can be expressed as a convex combination of other distribution functions
- Assume that for all x, F(x) can be written as

$$F(x) = \sum_{j=1}^{\infty} p_j F_j(x)$$
 $p_j \ge 0, \sum_{j=1}^{\infty} p_j = 1$

1. Generate a positive random integer *J* such that:

$$P(J = j) = p_j$$
 for $j = 1, 2, ...$

2. Return X with distribution function F_{J} .

Composition Technique Example

- $f(x) = 0.5e^{x}I_{(-\infty,0)}(x) + 0.5e^{-x}I_{(0,\infty)}(x)$ - $I_A(x) = 1$ if $x \in A$, $I_A(x) = 0$ otherwise
- Steps
 - Generate $U_1 \sim U(0,1)$
 - If $U_1 \le 0.5$, generate $U_2 \sim U(0,1)$ return X = In U_2
 - If $U_1 > 0.5$, generate $U_2 \sim U(0,1)$ return X = InU_2

Convolution Method

- For several important distributions, the desired random variable X can be expressed as the sum of other IID random variables
 - The other random variables (Y) can be generated more readily than X

$$X = Y_1 + Y_2 + \dots + Y_m$$

- Convolution algorithm
 - 1. Generate Y_1, Y_2, \dots, Y_m IID each with distribution function G
 - 2. Return X= $Y_1 + Y_2 + ... Y_m$

Convolution Method Example

- The m-Erlang r.v. X with mean β can be defined as the sum of m IID exponential r.v.s with common mean β/m
- To generate X
 - Generate $Y_1, Y_2, ..., Y_m$ as IID exponential with mean β/m
 - Return $X = Y_1 + Y_2 + ... + Y_m$

