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9.1 Introduction

e Output data analysis is often not conducted
appropriately
— Treating output of a single simulation run as
“true” system characteristics

* Appropriate statistical technigues must be
used

— Both in designing and analyzing system
experiments

&t HOWARD
A UNIVERSITY Jiang Li, Ph.D., EECS



Random Nature of Simulation Output

Output stochastic process from a single simulation run
—Y,Y,,...
— e.g. Y, can be the delay of the i-th customer

* Ingeneral, Y.'s are not neither independent nor identically
distributed

* First m output of j-th simulation run
= Yjv Yj2r -+ 7 ¥jm

* First m output of n simulation runs
Y11 Y120 7 Yim

Yo1r Y22, s Yom

ynli yn2' et ynm

* Y. - Ypi @re lID observations of Y;, can be used to infer about Y,
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simulation runs and
use the n observed

values of Y,
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Observation k£ + 1

“steady state” begins
Transient densities 1

—

Not necessarily a
normal density
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Steady-State Distribution

* F(yll) » F(y) asi —» o
— F(y): the steady state distribution of the output process
* In practice, find k such that F;, (y|I), Fi,.1 (¥]I), ...
are approximately the same

— Yy Y1, - Will approximately form a covariance-stationary
stochastic process

— Characteristics of Fy, (y|I), Fx+1(y|I), ... will be similar

* F(y) does not depend on initial conditions
— Converge rate does
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9.3 Types of Simulations with
Regard to Output Analysis

* Design and analysis depends on the type
* Simulation types

— Terminating
* A natural event specifies the length of each run
* |nitial conditions generally affect the performance
measures, and thus should be representative
— Nonterminating
* There is no natural event to specify run length

* We may be interested in the steady state mean or
probability P(Y<=y) for some real number y
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Terminating Events

 Terminating event is specified before running
— May occur at a random time

 Depends on the objective of the simulation

e Examples
— When the system is "cleaned out"

* Last customer leaves after closing time (c.f. ending at closing time)

— When no more useful information can be obtained
* 30% of force is lost in military confrontation simulation
— Points mandated by management

e 10 years of inventory outlook for a company
* 100 airplanes to produce
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Nonterminating Simulations (1)

* Needed when we are not sure about the system's
behavior

e Steady-state parameter

— A characteristics of the steady-state distribution of some
output stochastic process

— Make sure new information from the real system is
incorporated into the model as the latter may keep
changing (and may not have steady states)

e E.g. hourly throughput of a production line
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Nonterminating Simulations (2)

* A nonterminating simulation may not have a
steady-state distribution

* Divide time into cycles

— Y random variable defined on the i-th cycle

e E.g. average of production over a week
— FC¢: steady-state distribution of the process
Yt vs, ..
— Steady-state cycle parameter
A characteristic of Y¢ (Y ~ F¢), e.g. mean
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Steady-state Cycle Parameter
Examples

 Manufacturing system with lunch break hour
— No steady-state distribution for hourly throughput
— Steady-state cycle parameter
* Expected average hourly throughput in 8-hour cycles
e Call center with call arrival rate varying from day to
day in a week
— No steady-state distribution for the delay of i-th call

— Steady-state cycle parameter
* Expected average delay over a week
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9.4 Statistical Analysis for
Terminating Simulations

e Suppose we make n independent replications
of a terminating simulation

— Begin with the same initial conditions

— Use different random numbers for each
replication

— Assume a single performance measure is of
Interest

* E.g. the average delay of customers over a day
(simulations terminate at the end of day),

* E.g. number of tanks destroyed in a battle
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Estimating Means

* X.:arandom variable defined on the i-th replication
of simulation

* X'sarellD

Z?i:l) Xi
n
* 100(1-a) percent confidence interval for u

* Unbiased point estimate of u: X(n) =

Sz(n)

a
n_l'l_EN n

X(n) +t

— Fixed-sample-size procedure
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Average delay Proportion of
Number Finish time in queue Average queue  customers delayed
Replication served (hours) (minutes) length < 5 minutes

1 484 8.12 1.53 1.52 0917
2 475 8.14 1.66 1.62 0.916
3 484 8.19 1.24 L.23 0.952
4 483 8.03 2.34 2.34 0.822
5 455 8.03 2.00 1.89 0.840
6 461 8§32 1.69 1.56 0.866
7 451 8.09 2.69 2.50 0.783
8 486 8.19 2.86 2.83 0.782
9 502 8.15 1.70 1.74 0.873
10 475 8.24 2.60 2.50 0.779
Ni
2j=1Dj
e X; = — (N;: number served)
l

. X(10) = 2.03,52(10) = 0.31

52(10)
10

* X(10) % tg .05
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Robustness of the C.I. (1)

* How good is the coverage
* M/M/1 queue, p = 0.9, empty queue initially
— Expected average delay of first 25 customers is 2.12
* 500 experiments
— n replications of simulation per experiment (n=5,10,20,40)

— Construct a 90% confidence interval of average delay for
each experiment

— p: the proportion of the 500 C.l.'s containing 2.12

S2(n)

tn—1,1—% n o
— : measurement of the precision of the

X(n)

confidence interval
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n

5
10
20
40
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Estimated
coverage

0.880 = 0.024
0.864 = 0.025
0.886 = 0.023
0.914 = 0.021

Average of (confidence-interval
half-length)/X (n)

0.67
0.44
0.30
0.21

Four times of
replications
increases the
precision by about 2
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Robustness of the C.I. (3)

 Coverage may not becloseto1-a

Reliability model

— Failure time G = min(G,, max (G,, G;))

— G;'s are independent r.v. of Weibull (O 5, 1)

— n replications of simulation  « e
per experiment (n=5,10,20,40) - "

0.8 -

— Construct a 90% confidence

0.6 -

interval of failure time
for each experiment
i HO\VARD 0 0.5 1.0 1.5 2.(()(1) 25 3.0 3.5 40 X
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Estimated
coverage

0.708 = 0.033
0.750 = 0.032
0.800 = 0.029
0.840 = 0.027

* C.l. coverage depends on the distributions of X and

replication number n

 Why does it work better for M/M/17?
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Obtaining a Specified Precision (1)

* Confidence interval precision depends on n

— How much should be n for a particular precision?

* Measuring the error in X

— Absolute error of B

X —ul=p
— Relative error of y
| X — ul
=Y

lul
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Obtain Absolute Error of 3

* Given a 100(1-a)% confidence interval
— Let half length be h
l—a~PX—-—h<u<X+h)=P(X—ul<h
* Ifh<=B,P(IX —pul <h) <P(X —pul <pB)

— The absolute errorisat most Bw.p.1-«

52(n)
a
Tl-l,l—; n

 h=t

— Assume S?(n) does not change much as n changes (accuracy affected)

Sz(n
— Find ng(B) as the smallest is.t. t, /

n;(f) = min {l 11-2 Sz(n }

I/\
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Obtaining Absolute Error Example

* Average customer delay in bank
Ny

— X; = jjvl_ J (N;: number served)

— X(10) = 2.03,52%(10) = 0.31

S2(10)
10

e Use absolute error of 0.25, 90% confidence interval
( —— \
0.31

n;(0.25) = min{i 2 10:¢;_1 095 [—— < 0.25

. \ )
n;(0.25) = 16

~N"
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Obtain Relative Error of y

 Given a 100(1-a)% confidence interval (half length: h)

1—a=PX—
- WTSVJ%W—MhSVWD
<P(IX —pul <v'(IX — ul + |ub)

_(1X—ul v’
‘P( il S(l—y’))

x| _
“SP<|M <Y)m<

e Togetl —

h<u<X+h)=P(X—ul<h)

« Assume S%(n) and X(n) does not change much as n changes (accuracy

affected)

§2(n)

. (04 =
l—l,l—f l

t

Y

n-(y) = min |i = n: —
i 1X(n)]
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Obtaining Relative Error Example

* Average customer delay in bank

N;
Zj=1 D;

N;
— X(10) = 2.03,5%(10) = 0.31

- X; =

(N;: number served)

S2(10)

— X(10) + £9,0.95, |74

= 2.03 £ 0.32

e Use relative error of 0.1, 90% confidence interval

;
031 j

1 ti—1,0.95 i 01
+(0.1) = min (i > 10: <

Tlr( ) min Kl N — 01}
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Sequential Procedure

* New applications are added one at a time

§2(n)
a
Tl—l,l—E n

d(n,a) =t

e y:relative error (<= 0.15)
Confidence level of 100(1 - a)%

’ Steps Using the procedure on the
1. n= N, (>= 1()) previous example yields n = 74

2. Run n replications of the simulation
3. Calculate X(n) and §(n, @)

4. If SEn’a) < L, done; else n<-n + 1, go to step 2.
X(n) 1+y
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Recommended Use of the Procedures

* If the precision of the C.I. is not important, use the
fixed-sample-size procedure
— Willink C.I. may be needed if X;'s are highly non-normal
and the number of replications is too small
e Otherwise, run n (>= 10) replications of the
simulation, calculate n}; () or n;:(y) and run more
replications

— If ¥ > 0.15 or small 5, use several successive applications
of the fixed-sample-size procedure
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Choosing Initial Conditions

e Example:

— Want to determine average delay of bank customers
arriving between noon and 1 pm

— Using initial condition of zero customers at noon will cause
expected average delay to be biased low

— One solution: begin simulation at 9am (bank opening time)
with zero customers

 Run for four simulated hours

— Another approach for bank example

e Collect data on the number of customers present in the bank at
noon for several different days

— Choose initial conditions randomly from the distribution
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9.5 Statistical Analysis for Steady-
State Parameters

* Problem of the initial transient
— Also known as the startup problem

— Output stochastic process: Y,,Y,, ...
— Suppose P(Y; = y) = F;(y) > F(y) =P(Y < y)asi—

00

— ¢ is a characteristic of Y (e.g. E(Y), a quantile of Y)
* The characteristic based on Y,,Y,, ..., Y, is not representative of ¢
 E.g.Y(m) is a biased estimator of E(Y)

e Suggested solution: warming up the model or initial
data deletion

— Delete some observations from the beginning of a run
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Warm Up The Model

m
| — Yl
i=l+1 t

m-—l1

* For example, use Y(m,l) =
estimate E(Y)

* How to choose warmup period |
— Pick | and m such that E[Y(m, )] = E(Y)
—land m can't be too small, or E[Y (m, )] # E(Y)

— If | is larger than necessary, the variance of
Y (m, 1) will be unnecessarily large

0
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Replication

'

(1) Py ¥ige %ia ¥ wonn Fimetr Fpiy Fim
2) B, Yoo Bt Yoo w550 By Yapis Lo

? Step 1

Ifi — W+ 1,...,m_W @ Yor, Yoo Y3 Yuao o0y Yymo, Yn,m—l’ Yn,m j

b
7 S=—w *1+S A d - — — — _ _ _
YI'(W) - p‘:)r(?eiz Y. Yo Y3 Yy -0 Yy Y1 Yy, Step 2
2. NV N
* PlotY;(w)fori=1,2, .., m-W jng ¥ W W |
average Y1(1) Ya(1) Y3(1) LE Y,—1(1) Step 3
w=1
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7.(2) = 4.8 7.(2) = 5.4 d
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Recommedations
for Welch's Procedure

 |nitially, n =5 or 10, m should be much larger
than anticipated | and large enough to allow
for infrequent events

* Try different w for plotting, choose the
smallest w of "reasonably smooth" plots

— If no value of w looks good, n <« n + (5 or 10) and
repeat
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v

0.1 bad
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White's MSER Procedure

Marginal Standard Error Rules

i=i+1[Yi—Y(m,D]?

* MSER(m,l) = oy

* "= argmin MSER(m,I)
[=0,1,..,m—-1

* MSER-k

— Use batch average
forj=1,2,..,|m/k]
Y1 Yiej—1) +1
k
— IfI">|m/k]/2, increase m and redo.
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Replication/Deletion
Approach for Means

e Used to estimate the steady-state mean of a
process

* Should give reasonably good statistical
performance

* Easiest method to understand and implement
* Applies to all types of output parameters

e Can be used to estimate several different
parameters
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Replication/Deletion
Approach for Means

* Similar to that for terminating simulations

except that observations during warmup are
not used

* Given n replications, for j-th replication

_X. — ?;l+1 Yji
J m—1
— X (n) is an approx. unbiased point estimate for E(Y)
— C.I.
_ SZ(TL)
X(n)+t 114
n-1, —7\1 n
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Replication/Deletion
Approach for Means (cont'd)

* Use some replications as pilot runs for |, use
another set for estimation
— Can use the same set if m >> |

* To decrease C.l. half-length by k, make k?
times as many replications
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