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Output Data Analysis for a Single 
System

Based on the slides provided with the textbook
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9.1 Introduction

• Output data analysis is often not conducted 
appropriately

– Treating output of a single simulation run as 
“true” system characteristics

• Appropriate statistical techniques must be 
used

– Both in designing and analyzing system 
experiments
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Random Nature of Simulation Output

• Output stochastic process from a single simulation run
– Y1,Y2,…

– e.g. Yi can be the delay of the i-th customer

• In general, Yi's are not neither independent nor identically 
distributed

• First m output of j-th simulation run
– yj1, yj2, … , yjm

• First m output of n simulation runs
y11, y12, … , y1m

y21, y22, … , y2m

…

yn1, yn2, … , ynm

• y1i, …, yni are IID observations of Yi, can be used to infer about Yi
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9.2 Transient and Steady-State 
Behavior of a Stochastic Process

• Output stochastic process Y1,Y2,…

• Transient distribution
– 𝐹𝑖 𝑦 𝐼 = 𝑃 𝑌𝑖 ≤ 𝑦 𝐼 I: initial conditions

– Usually different for each i and I

– To make a histogram 

for 𝑓𝑖 𝑦 𝐼 , make n 

simulation runs and 

use the n observed 

values of Yi
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Steady-State Distribution

• 𝐹𝑖 𝑦 𝐼 → 𝐹(𝑦) as 𝑖 → ∞

– F(y): the steady state distribution of the output process

• In practice, find k such that 𝐹𝑘 𝑦 𝐼 , 𝐹𝑘+1 𝑦 𝐼 , …
are approximately the same

– Yk, Yk+1, … will approximately form a covariance-stationary 
stochastic process 

– Characteristics of 𝐹𝑘 𝑦 𝐼 , 𝐹𝑘+1 𝑦 𝐼 , … will be similar

• F(y) does not depend on initial conditions

– Converge rate does
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Ex: Convergence to Steady State
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9.3 Types of Simulations with 
Regard to Output Analysis

• Design and analysis depends on the type

• Simulation types

– Terminating

• A natural event specifies the length of each run

• Initial conditions generally affect the performance 
measures, and thus should be representative

– Nonterminating

• There is no natural event to specify run length

• We may be interested in the steady state mean or 
probability P(Y<=y) for some real number y
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Terminating Events

• Terminating event is specified before running

– May occur at a random time

• Depends on the objective of the simulation

• Examples

– When the system is "cleaned out"
• Last customer leaves after closing time (c.f. ending at closing time)

– When no more useful information can be obtained
• 30% of force is lost in military confrontation simulation

– Points mandated by management
• 10 years of inventory outlook for a company

• 100 airplanes to produce
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Nonterminating Simulations (1)

• Needed when we are not sure about the system's 
behavior

• Steady-state parameter

– A characteristics of the steady-state distribution of some 
output stochastic process

– Make sure new information from the real system is 
incorporated into the model as the latter may keep 
changing (and may not have steady states)

• E.g. hourly throughput of a production line

9



Jiang Li, Ph.D., EECS

Nonterminating Simulations (2)

• A nonterminating simulation may not have a 
steady-state distribution

• Divide time into cycles

– 𝑌𝑖
𝐶: random variable defined on the i-th cycle

• E.g. average of production over a week

– FC: steady-state distribution of the process 
𝑌1
𝐶 , 𝑌2

𝐶 , …

– Steady-state cycle parameter

• A characteristic of YC (YC ~ FC), e.g. mean
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Steady-state Cycle Parameter
Examples

• Manufacturing system with lunch break hour

– No steady-state distribution for hourly throughput

– Steady-state cycle parameter
• Expected average hourly throughput in 8-hour cycles

• Call center with call arrival rate varying from day to 
day in a week

– No steady-state distribution for the delay of i-th call

– Steady-state cycle parameter
• Expected average delay over a week
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9.4 Statistical Analysis for 
Terminating Simulations

• Suppose we make n independent replications 
of a terminating simulation

– Begin with the same initial conditions

– Use different random numbers for each 
replication

– Assume a single performance measure is of 
interest

• E.g. the average delay of customers over a day 
(simulations terminate at the end of day),

• E.g. number of tanks destroyed in a battle
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Estimating Means

• Xi: a random variable defined on the i-th replication 
of simulation

• Xi's are IID

• Unbiased point estimate of : ത𝑋 𝑛 =
σ 𝑖=1
𝑛 𝑋𝑖

𝑛

• 100(1-) percent confidence interval for 

ത𝑋 𝑛 ± 𝑡
𝑛−1,1−

𝛼
2

𝑠2 𝑛

𝑛

– Fixed-sample-size procedure
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Example of Estimating Means

• 𝑋𝑖 =
σ
𝑗=1

𝑁𝑖 𝐷𝑗

𝑁𝑖
(𝑁𝑖: number served)

• ത𝑋 10 = 2.03, 𝑆2 10 = 0.31

• ത𝑋 10 ± 𝑡9,0.95
𝑆2 10

10
= 2.03 ± 0.32
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Robustness of the C.I. (1)

• How good is the coverage

• M/M/1 queue,  = 0.9, empty queue initially

– Expected average delay of first 25 customers is 2.12

• 500 experiments

– n replications of simulation per experiment (n=5,10,20,40)

– Construct a 90% confidence interval of average delay for 
each experiment

– Ƹ𝑝: the proportion of the 500 C.I.'s containing 2.12

–
𝑡
𝑛−1,1−

𝛼
2

𝑆2 𝑛

𝑛

ത𝑋 𝑛
: measurement of the precision of the 

confidence interval
15
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Robustness of the C.I. (2)

• Ƹ𝑝 is only an estimate of the true coverage

• Confidence interval of coverage

Ƹ𝑝 ± 𝑍0.95
Ƹ𝑝 1 − Ƹ𝑝

500

– Should use only if 𝑛 Ƹ𝑝 ≥ 10 and 𝑛 1 − Ƹ𝑝 ≥ 10
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increases the 

precision by about 2



Jiang Li, Ph.D., EECS

Robustness of the C.I. (3)

• Coverage may not be close to 1 - ⍺

• Reliability model

– Failure time G = min(G1, max (G2, G3))

– Gi's are independent r.v. of Weibull (0.5, 1)

– n replications of simulation

per experiment (n=5,10,20,40)

– Construct a 90% confidence

interval of failure time

for each experiment
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Robustness of the C.I. (4)

• C.I. coverage depends on the distributions of Xi and 
replication number n

• Why does it work better for M/M/1?
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Robustness of the C.I. (5)

• Histogram of average 
delay (based on 500 
samples) 

• Histogram of failure 
time (based on 500 
samples)
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Obtaining a Specified Precision (1)

• Confidence interval precision depends on n

– How much should be n for a particular precision?

• Measuring the error in ത𝑋

– Absolute error of β
ത𝑋 − 𝜇 = 𝛽

– Relative error of γ
ത𝑋 − 𝜇

𝜇
= 𝛾
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Obtain Absolute Error of β

• Given a 100(1-⍺)% confidence interval
– Let half length be h

1 − 𝛼 ≈ 𝑃 ത𝑋 − ℎ ≤ 𝜇 ≤ ത𝑋 + ℎ = 𝑃( ത𝑋 − 𝜇 ≤ ℎ)

• If h <= β, 𝑃 ത𝑋 − 𝜇 ≤ ℎ ≤ 𝑃 ത𝑋 − 𝜇 ≤ 𝛽
– The absolute error is at most β w.p. 1 - ⍺

• h = 𝑡𝑛−1,1−𝛼
2

𝑆2 𝑛

𝑛

– Assume 𝑆2 𝑛 does not change much as n changes (accuracy affected)

– Find 𝑛𝑎
∗ 𝛽 as the smallest i s.t. 𝑡𝑖−1,1−𝛼

2

𝑆2 𝑛

𝑖
≤ 𝛽

𝑛𝑎
∗ 𝛽 = min 𝑖 ≥ 𝑛: 𝑡

𝑖−1,1−
𝛼

2

𝑆2 𝑛

𝑖
≤ 𝛽
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Obtaining Absolute Error Example

22

• Average customer delay in bank

– 𝑋𝑖 =
σ
𝑗=1

𝑁𝑖 𝐷𝑗

𝑁𝑖
(𝑁𝑖: number served)

– ത𝑋 10 = 2.03, 𝑆2 10 = 0.31

– ത𝑋 10 ± 𝑡9,0.95
𝑆2 10

10
= 2.03 ± 0.32

• Use absolute error of 0.25, 90% confidence interval

𝑛𝑎
∗ 0.25 = min 𝑖 ≥ 10: 𝑡𝑖−1,0.95

0.31

𝑖
≤ 0.25

𝑛𝑎
∗ 0.25 = 16
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Obtain Relative Error of γ

• Given a 100(1-⍺)% confidence interval (half length: h)
1 − 𝛼 ≈ 𝑃 ത𝑋 − ℎ ≤ 𝜇 ≤ ത𝑋 + ℎ = 𝑃 ത𝑋 − 𝜇 ≤ ℎ

• If 
ℎ

ത𝑋
≤ 𝛾′, 𝑃 ത𝑋 − 𝜇 ≤ 𝛾′ ത𝑋

≤ 𝑃 ത𝑋 − 𝜇 ≤ 𝛾′ ത𝑋 − 𝜇 + 𝜇

= 𝑃
ത𝑋 − 𝜇

𝜇
≤

𝛾′

1 − 𝛾′

• To get1 − 𝛼 ≤ 𝑃
ഥ𝑋−𝜇

𝜇
≤ 𝛾 , 

ℎ

ത𝑋
≤

𝛾

1+𝛾

• Assume 𝑆2 𝑛 and ത𝑋 𝑛 does not change much as n changes (accuracy 
affected)

𝑛𝑟
∗ 𝛾 = min 𝑖 ≥ 𝑛:

𝑡
𝑖−1,1−

𝛼
2

𝑆2 𝑛
𝑖

ത𝑋 𝑛
≤

𝛾

1 + 𝛾
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Obtaining Relative Error Example
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• Average customer delay in bank

– 𝑋𝑖 =
σ
𝑗=1

𝑁𝑖 𝐷𝑗

𝑁𝑖
(𝑁𝑖: number served)

– ത𝑋 10 = 2.03, 𝑆2 10 = 0.31

– ത𝑋 10 ± 𝑡9,0.95
𝑆2 10

10
= 2.03 ± 0.32

• Use relative error of 0.1, 90% confidence interval

𝑛𝑟
∗ 0.1 = min 𝑖 ≥ 10:

𝑡𝑖−1,0.95
0.31
𝑖

2.03
≤

0.1

1 + 0.1

𝑛𝑟
∗ 0.1 = 27
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Sequential Procedure
• New applications are added one at a time

• 𝛿 𝑛, 𝛼 = 𝑡
𝑛−1,1−

𝛼

2

𝑆2 𝑛

𝑛

• γ: relative error (<= 0.15)

• Confidence level of 100(1 - ⍺)%

• Steps

1. n = n0 (>= 10)

2. Run n replications of the simulation

3. Calculate ത𝑋 𝑛 and  𝛿 𝑛, 𝛼

4. If 
𝛿 𝑛,𝛼

ത𝑋 𝑛
≤

𝛾

1+𝛾
, done; else n <- n + 1, go to step 2.
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Recommended Use of the Procedures

• If the precision of the C.I. is not important, use the 
fixed-sample-size procedure

– Willink C.I. may be needed if Xj's are highly non-normal 
and the number of replications is too small

• Otherwise, run n (>= 10) replications of the 
simulation, calculate 𝑛𝑎

∗ 𝛽 or 𝑛𝑟
∗ 𝛾 and run more 

replications

– If 𝛾 > 0.15 or small 𝛽, use several successive applications 
of the fixed-sample-size procedure
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Choosing Initial Conditions

• Example:

– Want to determine average delay of bank customers 
arriving between noon and 1 pm

– Using initial condition of zero customers at noon will cause 
expected average delay to be biased low

– One solution: begin simulation at 9am (bank opening time) 
with zero customers
• Run for four simulated hours

– Another approach for bank example
• Collect data on the number of customers present in the bank at 

noon for several different days

– Choose initial conditions randomly from the distribution
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9.5 Statistical Analysis for Steady-
State Parameters

• Problem of the initial transient

– Also known as the startup problem

– Output stochastic process: Y1,Y2, …

– Suppose 𝑃 𝑌𝑖 ≤ 𝑦 = 𝐹𝑖 𝑦 → 𝐹 𝑦 = 𝑃 𝑌 ≤ 𝑦 as 𝑖 →
∞

–  is a characteristic of Y (e.g. E(Y),  a quantile of Y)
• The characteristic based on Y1,Y2, …, Ym is not representative of 

• E.g. ത𝑌(𝑚) is a biased estimator of E(Y)

• Suggested solution: warming up the model or initial 
data deletion

– Delete some observations from the beginning of a run
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Warm Up The Model

• For example, use ത𝑌 𝑚, 𝑙 =
σ𝑖=𝑙+1
𝑚 𝑌𝑖

𝑚−𝑙
to 

estimate E(Y)

• How to choose warmup period l

– Pick l and m such that 𝐸 ത𝑌 𝑚, 𝑙 ≈ 𝐸 𝑌

– l and m can't be too small, or 𝐸 ത𝑌 𝑚, 𝑙 ≠ 𝐸 𝑌

– If l is larger than necessary, the variance of 
ത𝑌 𝑚, 𝑙 will be unnecessarily large
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Welch's Graphical Procedure

• n  5

• ത𝑌𝑖 = σ 𝑗=1
𝑛 𝑌𝑗𝑖

𝑛

• w: window

• If 𝑖 = 1, … ,𝑤

ത𝑌𝑖 𝑤 =
σ𝑠=−(𝑖−1)
𝑖−1 ത𝑌𝑖+𝑠

2𝑖 − 1
• If 𝑖 = 𝑤 + 1,… ,𝑚 − 𝑤

ത𝑌𝑖 𝑤 =
σ𝑠=−𝑤
𝑤 ത𝑌𝑖+𝑠
2𝑤 + 1

• Plot ത𝑌𝑖 𝑤 for i = 1,2, …, m-w
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Welch's Procedure Example 1

• m=10

• w=2

• ത𝑌𝑖 = 𝑖 for i = 1,2,..,5

• ത𝑌𝑖 =6 for i = 6,7,…,10

31

ത𝑌1 2 = 1 ത𝑌2 2 = 2

ത𝑌3 2 = 3 ത𝑌4 2 = 4

ത𝑌5 2 = 4.8 ത𝑌6 2 = 5.4

ത𝑌7 2 = 5.8 ത𝑌8 2 = 6
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Recommedations
for Welch's Procedure

• Initially, n = 5 or 10, m should be much larger 
than anticipated l and large enough to allow 
for infrequent events

• Try different w for plotting, choose the 
smallest w of "reasonably smooth" plots

– If no value of w looks good, n  n + (5 or 10) and 
repeat
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Welch's Procedure Example 2
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Welch's Procedure Example 2 
(cont'd)

w = 20
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Welch's Procedure Example 2 (cont'd)
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White's MSER Procedure

• Marginal Standard Error Rules

• 𝑀𝑆𝐸𝑅 𝑚, 𝑙 =
σ𝑖=𝑙+1
𝑚 𝑌𝑖−ത𝑌 𝑚,𝑙 2

𝑚−𝑙 2

• 𝑙∗ = arg min
𝑙=0,1,…,𝑚−1

𝑀𝑆𝐸𝑅(𝑚, 𝑙)

• MSER-k

– Use batch average

for j = 1,2,…, 𝑚/𝑘

𝑍𝑗 =
σ𝑖=1
𝑘 𝑌𝑘 𝑗−1 + 𝑖

𝑘
– If l* > 𝑚/𝑘 /2, increase m and redo.
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Replication/Deletion 
Approach for Means

• Used to estimate the steady-state mean of a 
process

• Should give reasonably good statistical 
performance

• Easiest method to understand and implement

• Applies to all types of output parameters

• Can be used to estimate several different 
parameters
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Replication/Deletion 
Approach for Means

• Similar to that for terminating simulations 
except that observations during warmup are 
not used

• Given n replications, for j-th replication

– 𝑋𝑗 =
σ𝑖=𝑙+1
𝑚 𝑌𝑗𝑖

𝑚−𝑙

– ത𝑋 𝑛 is an approx. unbiased point estimate for E(Y)

– C.I.
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ത𝑋 𝑛 ± 𝑡
𝑛−1,1−

𝛼
2

𝑠2 𝑛

𝑛
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Replication/Deletion 
Approach for Means (cont'd)

• Use some replications as pilot runs for l, use 
another set for estimation

– Can use the same set if m >> l

• To decrease C.I. half-length by k, make k2

times as many replications
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