Output Data Analysis for a Single System

Chapter 9

Based on the slides provided with the textbook

Jiang Li, Ph.D., EECS

9.1 Introduction

- Output data analysis is often not conducted appropriately
 - Treating output of a single simulation run as "true" system characteristics
- Appropriate statistical techniques must be used
 - Both in designing and analyzing system experiments

Random Nature of Simulation Output

- Output stochastic process from a single simulation run
 - Y₁,Y₂,...
 - e.g. Y_i can be the delay of the i-th customer
- In general, Y_i's are not neither independent nor identically distributed
- First m output of j-th simulation run

 $- y_{j1}, y_{j2}, ..., y_{jm}$

• First m output of n simulation runs

```
Y<sub>11</sub>, Y<sub>12</sub>, ... , Y<sub>1m</sub>
Y<sub>21</sub>, Y<sub>22</sub>, ... , Y<sub>2m</sub>
```

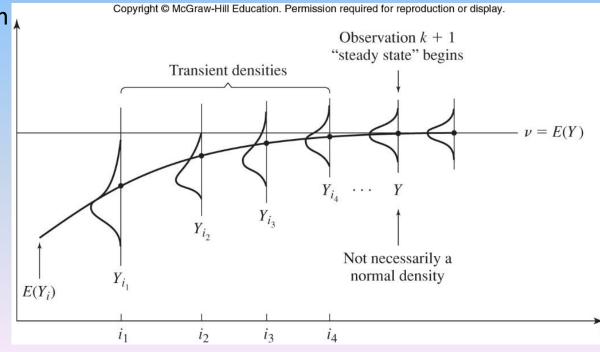
 $y_{n1}, y_{n2}, \dots, y_{nm}$

• $y_{1i_{i}}$..., y_{ni} are IID observations of Y_{i} , can be used to infer about Y_{i} HOWARD UNIVERSITY 3 Jiang Li, Ph.D., EECS

9.2 Transient and Steady-State Behavior of a Stochastic Process

4

- Output stochastic process Y1,Y2,...
- Transient distribution
 - $F_i(y|I) = P(Y_i \le y|I)$ I: initial conditions
 - Usually different for each i and I
 - To make a histogram, for f_i(y|I), make n simulation runs and use the n observed values of Y_i



Steady-State Distribution

• $F_i(y|I) \to F(y)$ as $i \to \infty$

F(y): the steady state distribution of the output process

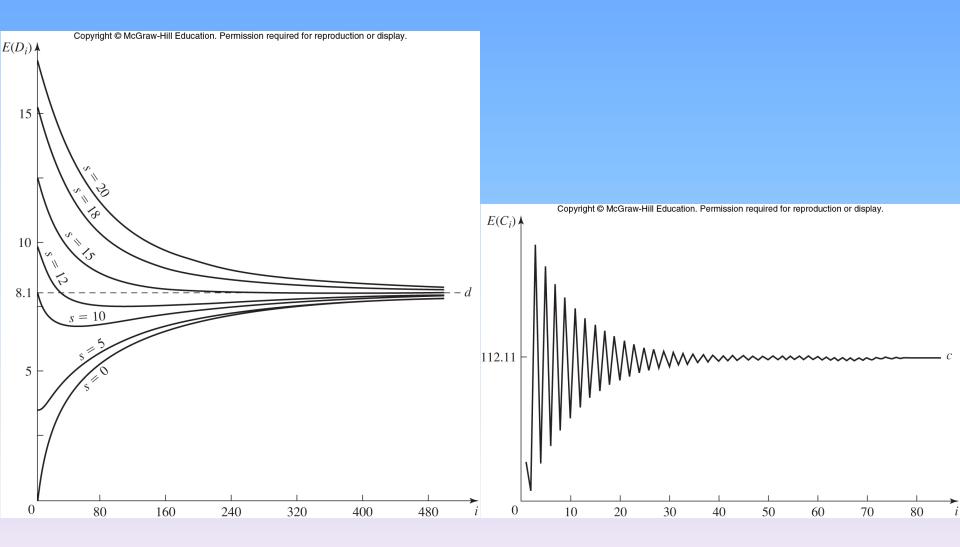
- In practice, find k such that $F_k(y|I)$, $F_{k+1}(y|I)$, ... are approximately the same
 - Y_k, Y_{k+1}, ... will approximately form a covariance-stationary stochastic process

- Characteristics of $F_k(y|I)$, $F_{k+1}(y|I)$, ... will be similar

• F(y) does not depend on initial conditions

Converge rate does

Ex: Convergence to Steady State



9.3 Types of Simulations with Regard to Output Analysis

- Design and analysis depends on the type
- Simulation types
 - Terminating
 - A natural event specifies the length of each run
 - Initial conditions generally affect the performance measures, and thus should be representative
 - Nonterminating
 - There is no natural event to specify run length
 - We may be interested in the steady state mean or probability P(Y<=y) for some real number y

Terminating Events

- Terminating event is specified before running
 - May occur at a random time
- Depends on the objective of the simulation
- Examples
 - When the system is "cleaned out"
 - Last customer leaves after closing time (c.f. ending at closing time)
 - When no more useful information can be obtained
 - 30% of force is lost in military confrontation simulation
 - Points mandated by management
 - 10 years of inventory outlook for a company
 - 100 airplanes to produce

Nonterminating Simulations (1)

- Needed when we are not sure about the system's behavior
- Steady-state parameter
 - A characteristics of the steady-state distribution of some output stochastic process
 - Make sure new information from the real system is incorporated into the model as the latter may keep changing (and may not have steady states)
- E.g. hourly throughput of a production line

Nonterminating Simulations (2)

- A nonterminating simulation may not have a steady-state distribution
- Divide time into cycles
 - $-Y_i^C$: random variable defined on the i-th cycle
 - E.g. average of production over a week
 - F^C : steady-state distribution of the process $Y_1^C, Y_2^C, ...$
 - Steady-state cycle parameter
 - A characteristic of Y^C (Y^C ~ F^C), e.g. mean

Steady-state Cycle Parameter Examples

- Manufacturing system with lunch break hour
 - No steady-state distribution for hourly throughput
 - Steady-state cycle parameter
 - Expected average hourly throughput in 8-hour cycles
- Call center with call arrival rate varying from day to day in a week
 - No steady-state distribution for the delay of i-th call
 - Steady-state cycle parameter
 - Expected average delay over a week

9.4 Statistical Analysis for Terminating Simulations

- Suppose we make *n* independent replications of a terminating simulation
 - Begin with the same initial conditions
 - Use different random numbers for each replication
 - Assume a single performance measure is of interest
 - E.g. the average delay of customers over a day (simulations terminate at the end of day),
 - E.g. number of tanks destroyed in a battle

Estimating Means

- X_i: a random variable defined on the i-th replication of simulation
- X_i's are IID
- Unbiased point estimate of $\mu: \overline{X}(n) = \frac{\sum_{i=1}^{n} X_i}{n}$
- 100(1- α) percent confidence interval for μ

$$\bar{X}(n) \pm t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{s^{2(n)}}{n}}$$

Fixed-sample-size procedure

Example of Estimating Means

	Copyright & Mediaw hin Education. I enhission required for reproduction of display.				
Replication	Number served	Finish time (hours)	Average delay in queue (minutes)	Average queue length	Proportion of customers delayed < 5 minutes
1	484	8.12	1.53	1.52	0.917
2	475	8.14	1.66	1.62	0.916
3	484	8.19	1.24	1.23	0.952
4	483	8.03	2.34	2.34	0.822
5	455	8.03	2.00	1.89	0.840
6	461	8.32	1.69	1.56	0.866
7	451	8.09	2.69	2.50	0.783
8	486	8.19	2.86	2.83	0.782
9	502	8.15	1.70	1.74	0.873
10	475	8.24	2.60	2.50	0.779

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

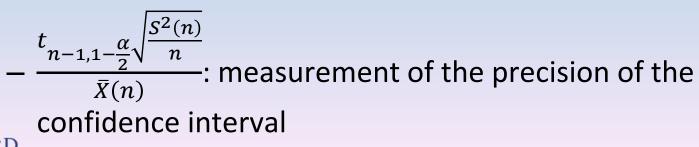
•
$$X_i = \frac{\sum_{j=1}^{N_i} D_j}{N_i}$$
 (N_i : number served)

•
$$\overline{X}(10) = 2.03, S^2(10) = 0.31$$

•
$$\bar{X}(10) \pm t_{9,0.95} \sqrt{\frac{S^2(10)}{10}} = 2.03 \pm 0.32$$

Robustness of the C.I. (1)

- How good is the coverage
- M/M/1 queue, ρ = 0.9, empty queue initially
 - Expected average delay of first 25 customers is 2.12
- 500 experiments
 - n replications of simulation per experiment (n=5,10,20,40)
 - Construct a 90% confidence interval of average delay for each experiment
 - $-\hat{p}$: the proportion of the 500 C.I.'s containing 2.12



Robustness of the C.I. (2)

- \hat{p} is only an estimate of the true coverage
- Confidence interval of coverage

$$\hat{p} \pm Z_{0.95} \sqrt{\frac{\hat{p}(1-\hat{p})}{500}}$$

– Should use only if $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$

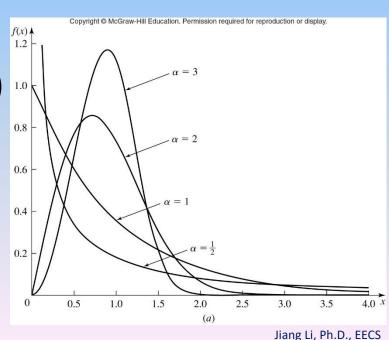
Copyright © McGraw-Hill Education. Permission required for reproduction or display.

n	Estimated coverage	Average of (confidence-interval half-length)/ $\overline{X}(n)$	
5	0.880 ± 0.024	0.67 Four times	s of
10	0.864 ± 0.025	0.44 replication	S
20	0.886 ± 0.023	0.30 increases	the
40	0.914 ± 0.021	0.21 precision b	by about 2

Robustness of the C.I. (3)

17

- Coverage may not be close to 1 α
- Reliability model
 - Failure time $G = min(G_1, max (G_2, G_3))$
 - G_i's are independent r.v. of Weibull (0.5, 1)
 - n replications of simulation
 per experiment (n=5,10,20,40)
 - Construct a 90% confidence
 interval of failure time
 for each experiment



Robustness of the C.I. (4)

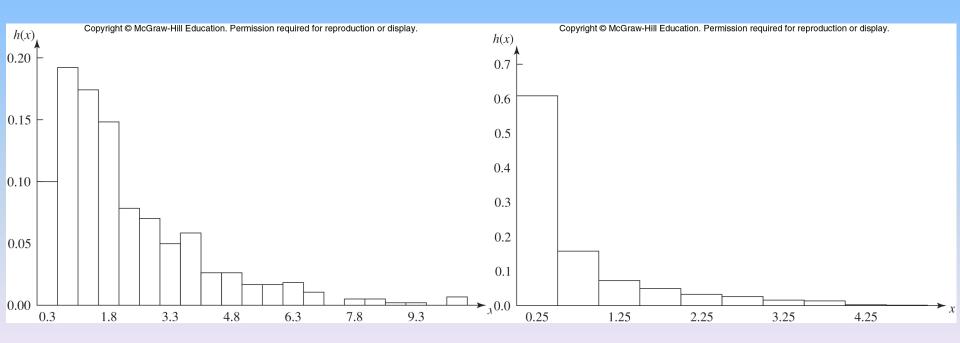
Copyright © McGraw-Hill Education. Permission required for reproduction or display.

n	Estimated coverage	Average of (confidence-interval half-length)/ $\overline{X}(n)$
5	0.708 ± 0.033	1.16
10	0.750 ± 0.032	0.82
20	0.800 ± 0.029	0.60
40	0.840 ± 0.027	0.44

- C.I. coverage depends on the distributions of X_i and replication number n
- Why does it work better for M/M/1?

Robustness of the C.I. (5)

- Histogram of average delay (based on 500 samples)
- Histogram of failure time (based on 500 samples)



Obtaining a Specified Precision (1)

- Confidence interval precision depends on n

 How much should be n for a particular precision?
- Measuring the error in \overline{X}
 - Absolute error of β

$$\bar{X} - \mu| = \beta$$

– Relative error of γ

$$\frac{|\bar{X} - \mu|}{|\mu|} = \gamma$$

Obtain Absolute Error of β

- Given a 100(1-α)% confidence interval
 - Let half length be h $1 - \alpha \approx P(\overline{X} - h \le \mu \le \overline{X} + h) = P(|\overline{X} - \mu| \le h)$
- If $h \le \beta$, $P(|\overline{X} \mu| \le h) \le P(|\overline{X} \mu| \le \beta)$

– The absolute error is at most β w.p. 1 - α

• h =
$$t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}$$

- Assume $S^2(n)$ does not change much as n changes (accuracy affected)

- Find $n_a^*(\beta)$ as the smallest *i* s.t. $t_{i-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{i}} \le \beta$

$$n_a^*(\beta) = \min\left\{i \ge n: t_{i-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{i}} \le \beta\right\}$$

Obtaining Absolute Error Example

• Average customer delay in bank

$$-X_{i} = \frac{\sum_{j=1}^{N_{i}} D_{j}}{N_{i}} \quad (N_{i}: \text{number served})$$
$$-\overline{X}(10) = 2.03, S^{2}(10) = 0.31$$

$$-\bar{X}(10) \pm t_{9,0.95} \sqrt{\frac{S^2(10)}{10}} = 2.03 \pm 0.32$$

• Use absolute error of 0.25, 90% confidence interval $n_a^*(0.25) = \min\left\{i \ge 10: t_{i-1,0.95}\sqrt{\frac{0.31}{i}} \le 0.25\right\}$ $n_a^*(0.25) = 16$

Obtain Relative Error of y

• Given a 100(1- α)% confidence interval (half length: h) $1 - \alpha \approx P(\overline{X} - h \le \mu \le \overline{X} + h) = P(|\overline{X} - \mu| \le h)$

• If
$$\frac{h}{|\bar{X}|} \leq \gamma'$$
, $P(|\bar{X} - \mu| \leq \gamma' |\bar{X}|)$
 $\leq P(|\bar{X} - \mu| \leq \gamma' (|\bar{X} - \mu| + |\mu|))$
 $= P\left(\frac{|\bar{X} - \mu|}{|\mu|} \leq \frac{\gamma'}{(1 - \gamma')}\right)$
• To get $1 - \alpha \leq P\left(\frac{|\bar{X} - \mu|}{|\mu|} \leq \gamma\right)$, $\frac{h}{|\bar{X}|} \leq \frac{\gamma}{1 + \gamma}$

• Assume $S^2(n)$ and $\overline{X}(n)$ does not change much as n changes (accuracy affected)

$$n_r^*(\gamma) = \min\left\{i \ge n: \frac{t_{i-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{i}}}{|\bar{X}(n)|} \le \frac{\gamma}{1+\gamma}\right\}$$

Obtaining Relative Error Example

• Average customer delay in bank

$$-X_{i} = \frac{\sum_{j=1}^{N_{i}} D_{j}}{N_{i}} \quad (N_{i}: \text{number served})$$
$$-\overline{X}(10) = 2.03, S^{2}(10) = 0.31$$
$$-\overline{X}(10) \pm t_{9,0.95} \sqrt{\frac{S^{2}(10)}{10}} = 2.03 \pm 0.32$$

• Use relative error of 0.1, 90% confidence interval $n_r^*(0.1) = \min\left\{i \ge 10: \frac{t_{i-1,0.95}\sqrt{\frac{0.31}{i}}}{2.03} \le \frac{0.1}{1+0.1}\right\}$ $n_r^*(0.1) = 27$

Sequential Procedure

• New applications are added one at a time

•
$$\delta(n,\alpha) = t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}}$$

- γ: relative error (<= 0.15)
- Confidence level of $100(1 \alpha)\%$
- Steps
 - 1. n = n₀ (>= 10)

Using the procedure on the previous example yields n = 74

- 2. Run n replications of the simulation
- 3. Calculate $\overline{X}(n)$ and $\delta(n, \alpha)$

4. If
$$\frac{\delta(n,\alpha)}{\bar{X}(n)} \leq \frac{\gamma}{1+\gamma}$$
, done; else n <- n + 1, go to step 2.

Recommended Use of the Procedures

- If the precision of the C.I. is not important, use the fixed-sample-size procedure
 - Willink C.I. may be needed if X_j's are highly non-normal and the number of replications is too small
- Otherwise, run n (>= 10) replications of the simulation, calculate n^{*}_a(β) or n^{*}_r(γ) and run more replications
 - If γ > 0.15 or small β , use several successive applications of the fixed-sample-size procedure

Choosing Initial Conditions

- Example:
 - Want to determine average delay of bank customers arriving between noon and 1 pm
 - Using initial condition of zero customers at noon will cause expected average delay to be biased low
 - One solution: begin simulation at 9am (bank opening time) with zero customers
 - Run for four simulated hours
 - Another approach for bank example
 - Collect data on the number of customers present in the bank at noon for several different days
 - Choose initial conditions randomly from the distribution

9.5 Statistical Analysis for Steady-State Parameters

- Problem of the initial transient
 - Also known as the startup problem
 - Output stochastic process: Y₁, Y₂, ...
 - Suppose $P(Y_i \le y) = F_i(y) \rightarrow F(y) = P(Y \le y)$ as $i \rightarrow \infty$
 - $-\phi$ is a characteristic of Y (e.g. E(Y), a quantile of Y)
 - The characteristic based on $Y_1,Y_2,$..., Y_m is not representative of φ
 - E.g. $\overline{Y}(m)$ is a biased estimator of E(Y)
- Suggested solution: warming up the model or initial data deletion
 - Delete some observations from the beginning of a run

Warm Up The Model

- For example, use $\overline{Y}(m, l) = \frac{\sum_{i=l+1}^{m} Y_i}{m-l}$ to estimate E(Y)
- How to choose warmup period I
 - Pick I and m such that $E[\overline{Y}(m, l)] \approx E(Y)$
 - I and m can't be too small, or $E[\overline{Y}(m, l)] \neq E(Y)$
 - If I is larger than necessary, the variance of $\overline{Y}(m, l)$ will be unnecessarily large

Welch's Graphical Procedure

- $n \ge 5$
- $\bar{Y}_i = \sum_{(j=1)}^n \frac{Y_{ji}}{n}$
- w: window
- If i = 1, ..., w $\overline{Y}_i(w) = \frac{\sum_{s=-(i-1)}^{i-1} \overline{Y}_{i+s}}{2i-1}$

• If
$$i = w + 1, ..., m - w$$

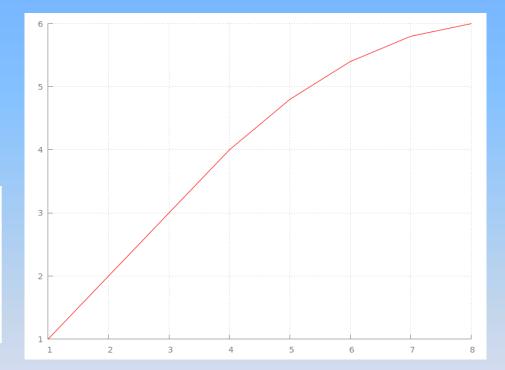
 $\bar{Y}_i(w) = \frac{\sum_{s=-w}^w \bar{Y}_{i+s}}{2w + 1}$

• Plot $\overline{Y}_i(w)$ for i = 1,2, ..., m-w

Welch's Procedure Example 1

- m=10
- w=2
- $\overline{Y}_i = i$ for i = 1,2,...,5
- $\overline{Y}_i = 6$ for i = 6,7,...,10

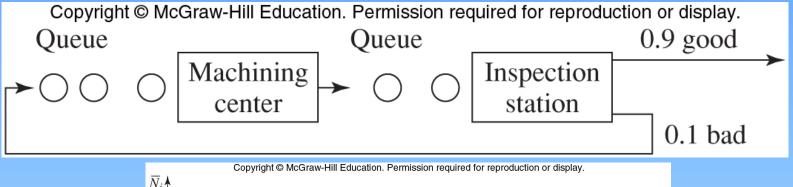
$\bar{Y}_1(2) = 1$	$\bar{Y}_2(2) = 2$
$\overline{Y}_3(2) = 3$	$\overline{Y}_4(2) = 4$
$\bar{Y}_{5}(2) = 4.8$	$\overline{Y}_6(2) = 5.4$
$\bar{Y}_7(2) = 5.8$	$\overline{Y}_8(2) = 6$

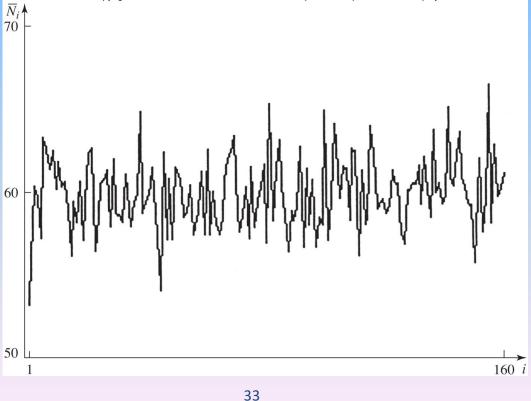


Recommedations for Welch's Procedure

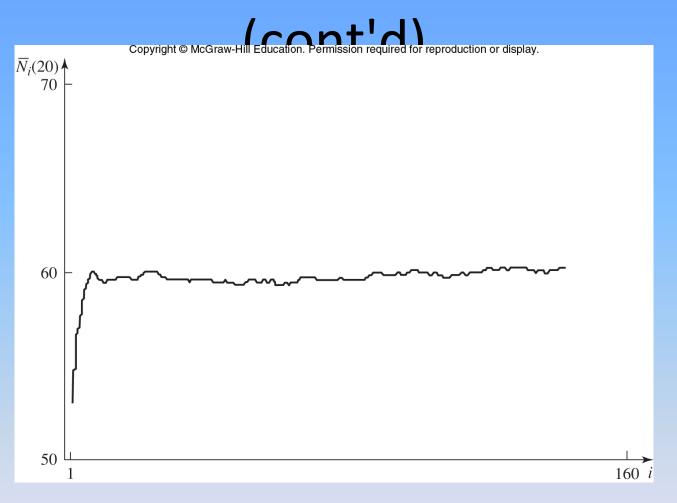
- Initially, n = 5 or 10, m should be much larger than anticipated I and large enough to allow for infrequent events
- Try different w for plotting, choose the smallest w of "reasonably smooth" plots
 - If no value of w looks good, n ← n + (5 or 10) and repeat

Welch's Procedure Example 2



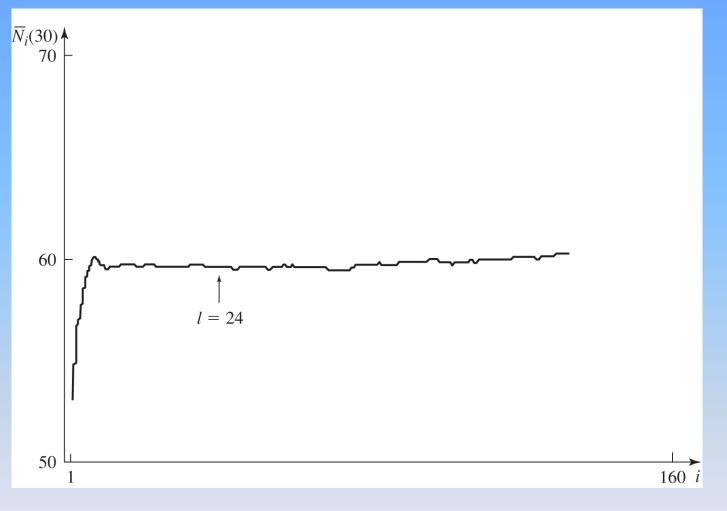


Welch's Procedure Example 2



w = 20

Welch's Procedure Example 2 (cont'd)



w = 30

White's MSER Procedure

Marginal Standard Error Rules

•
$$MSER(m,l) = \frac{\sum_{i=l+1}^{m} [Y_i - \bar{Y}(m,l)]^2}{(m-l)^2}$$

•
$$l^* = \underset{l=0,1,...,m-1}{\operatorname{arg\,min}} MSER(m,l)$$

- MSER-k
 - Use batch average

for j = 1,2,...,
$$[m/k]$$

$$Z_j = \frac{\sum_{i=1}^k Y_{k(j-1)} + i}{k}$$

- If $l^* > \lfloor m/k \rfloor/2$, increase m and redo.

Replication/Deletion Approach for Means

- Used to estimate the steady-state mean of a process
- Should give reasonably good statistical performance
- Easiest method to understand and implement
- Applies to all types of output parameters
- Can be used to estimate several different parameters

Replication/Deletion Approach for Means

- Similar to that for terminating simulations except that observations during warmup are not used
- Given n replications, for j-th replication

$$-X_{j} = \frac{\sum_{i=l+1}^{m} Y_{ji}}{m-l}$$

- $\overline{X}(n)$ is an approx. unbiased point estimate for E(Y)
- C.I.
 $\overline{X}(n) \pm t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{s^{2(n)}}{n}}$

Replication/Deletion Approach for Means (cont'd)

• Use some replications as pilot runs for I, use another set for estimation

– Can use the same set if m >> I

 To decrease C.I. half-length by k, make k² times as many replications

