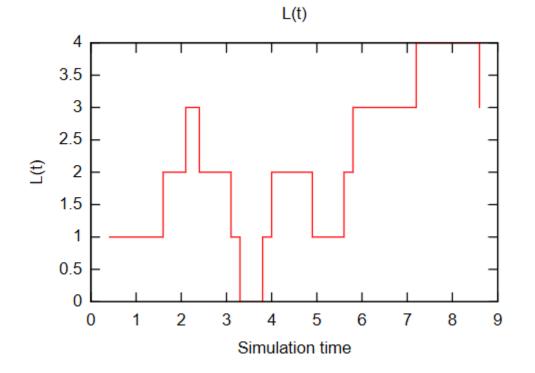
CSCI 410: Modeling and Simulation


Written Assignment 1 Key

(103 pts in total)

- 1. For the single-server queueing system in Section 1.4, define L(t) to be the total number of customers in the system at time t (including the queue and the customer in service at time t, if any).
 - (a) (4 pts) Is it true that L(t) = Q(t) + 1? Why or why not? If not, correct the right side of the equation. You may use the functions defined in Section 1.4.
 - (b) **(5 pts)** For the same realization considered for the hand simulation in Section 1.4.2, make a plot of L(t) vs. t (similar to Figs. 1.5 and 1.6) between times 0 and T(6).
 - (c) **(4 pts)** From your plot in part (b), compute $\hat{l}(6)$ = the time-average number of customers in the system during the time interval [0, T(t)]. Show the expressions for computation, mimicking Equations 1.2 and 1.3.
 - (d) (2 pts) What is $\hat{l}(6)$ estimating?

Answer:

- (a) L(t) = Q(t) + 1 is not true. When the server is idle and the queue is empty, L(t) = 0 < Q(t) + 1 = 1. The right side should be L(t) = Q(t) + B(t), where B(t) is defined on Page 16 in the textbook.
- (b)

- (c) $\hat{l}(6) = ((0.4-0) \times 0 + (1.6-0.4) \times 1 + (2.1-1.6) \times 2 + (2.4-2.1) \times 3 + (3.1-2.4) \times 2 + (3.3-3.1) \times 1 + (3.8-3.1) \times 0 + (4.0-3.8) \times 1 + (4.9-4.0) \times 2 + (5.6-4.9) \times 1 + (5.8-5.6) \times 2 + (7.2-5.8) \times 3 + (8.6-7.2) \times 4) / 8.6 = 17.6 / 8.6 \approx 2.05$
- (d) $\hat{l}(6)$ estimates the expected number of customers in the system.
- (20 pts, 4 pts for each event) Suppose the list of interarrival and service times in Section 1.4.2 is augmented by the following items: A₁₀ = 0.6, A₁₁ = 1.1, A₁₂ = 1.5, A₁₃ = 0.8, S₇ = 2.0, S₈ = 2.5. Assume the simulation stops when the 7th customer leaves the system. Show the system state, simulation clock, event list and statistical counters as in Figure 1.7 after processing each even since simulation time of 8.6.

Answer:

Event 1: (Clock = 9.1)

Arrival time = 9.1: System: 5.6 (in server), 5.8, 7.2, 9.1 (in queue) System state: Server status = 1 Number in Queue = 3 Time of arrival = 5.8, 7.2, 9.1 Time of last event = 9.1

Event 2: (Clock = 9.2)

Departure time = 9.2: System: 5.8 (in server), 7.2, 9.1 (in queue) System state: Server status = 1 Number in Queue = 2 Time of arrival = 7.2, 9.1 Time of last event = 9.2

Event 3: (Clock = 9.7)

Arrival time = 9.7: System: 5.8 (in server), 7.2, 9.1, 9.7 (in queue) System state: Server status = 1 Number in Queue = 3 Time of arrival = 7.2, 9.1, 9.7 Time of last event = 9.7

Event 4: (Clock = 10.8)

Arrival time = 10.8: System: 5.8 (in server), 7.2, 9.1, 9.7, 10.8 (in queue) Event list: $A = 9.7 (= 9.1 + A_{10} = 9.1 + 0.6), D = 9.2$ Statistical counters: Number delayed = 6 Total delay = 5.7 Area under Q(t) = 10.9 (= 9.9 + (9.1 - 8.6) × 2) Area under B(t) = 8.2 (= 7.7 + (9.1 - 8.6) × 1)

Event list: A = 9.7, D = 11.2 (= $9.2 + S_7 = 9.2 + 2.0$) Statistical counters: Number delayed = 7 Total delay = 9.1 (= 5.7 + (9.2 - 5.8)) Area under Q(t) = 11.2 (= $10.9 + (9.2 - 9.1) \times 3$) Area under B(t) = 8.3 (= $8.2 + (9.2 - 9.1) \times 1$)

Event list: $A = 10.8 (= 9.7 + A_{11} = 9.7 + 1.1), D = 11.2$ Statistical counters: Number delayed = 7 Total delay = 9.1 Area under Q(t) = 12.2 (= 11.2 + (9.7 - 9.2) × 2) Area under B(t) = 8.8 (= 8.3 + (9.7 - 9.2) × 1)

Event list:

A = 12.3 ((= 10.8 + A₁₂ = 10.8 + 1.5), D = 11.2 Statistical counters:

System state:
Server status = 1
Number in Queue = 4
Time of arrival = 7.2, 9.1, 9.7, 10.8
Time of last event = 10.8

Number delayed = 7 Total delay = 9.1 Area under Q(t) = 15.5 (= $12.2 + (10.8 - 9.7) \times 3$) Area under B(t) = 9.9 (= $8.8 + (10.8 - 9.7) \times 1$)

Event 5: (Clock = 11.2) (the 7th customer leaves the system)

Departure time = 11.2:	Event list:
System: 7.2 (in server), 9.1, 9.7, 10.8 (in	A = 12.3, D = 13.7 (= 11.2 + S ₈ = 11.2 + 2.5)
queue)	Statistical counters:
System state:	Number delayed = 8
Server status = 1	Total delay = 13.1 (= 9.1 + (11.2 – 7.2))
Number in Queue = 3	Area under Q(t) = 17.1 (= 15.5 + (11.2 – 10.8) × 4)
Time of arrival = 9.1, 9.7, 10.8	Area under B(t) = 10.3 (= 9.9 + (11.2 – 10.8) × 1)
Time of last event = 11.2	

3. (4 pts) Suppose the simulation in section 1.4 stops at simulation time of 8.1. Show the system state, simulation clock, event list and statistical counters at the end of the simulation.

Answer:

System state:	Event list:
Server status = 1	A = 9.1, D = 8.6
Number in Queue = 3	Statistical counters:
Time of arrival = 5.6, 5.8, 7.2	Number delayed = 5
Time of last event = 7.2	Total delay = 2.7
Clock = 8.1	Area under Q(t) = 5.7
	Area under B(t) = 6.3

- 4. For the single-server queueing system in Section 1.4, suppose a customer leaves the system without being served after staying in the queue for 0.2 or more units of time.
 - (a) (4 pts) What new events must be introduced?
 - (b) **(60 pts, 4 pts for each event)** Show the system state, simulation clock and event list after each event until the end of the simulation. The simulation finishes at simulation time of 9.0.

Answer:

(a) A new event of "Pre-mature departure" (meaning departure without being serviced) must be introduced.

(b)

Event 1: (Clock = 0.4)	
Arrival time = 0.4:	Event list: (P: Premature departure)
System: 0.4 (in server)	A = 1.6, D = 2.4, P = ∞
System state:	Statistical counters:
Server status = 1	Number delayed = 1
Number in Queue = 0	Total delay = 0
Time of arrival = (None)	Area under Q(t) = 0
Time of last event = 0.4	Area under B(t) = 0

Event 2: (Clock = 1.6)

Arrival time = 1.6: System: 0.4 (in server), 1.6 (in queue) System state: Server status = 1 Number in Queue = 1 Time of arrival = 1.6 Time of last event = 0.4

Event 3: (Clock = 1.8)

Premature departure time = 1.8: System: 0.4 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 1.8

Event 4: (Clock = 2.1)

Arrival time = 2.1: System: 0.4 (in server), 2.1 (in queue) System state: Server status = 1 Number in Queue = 1 Time of arrival = 2.1 Time of last event = 2.1

Event 5: (Clock = 2.3)

Premature departure time = 2.3: System: 0.4 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 2.3

Event 6: (Clock = 2.4)

```
Departure time = 2.4:
System: idle
System state:
Server status = 0
Number in Queue = 0
Time of arrival = (None)
Time of last event = 2.4
```

Event 7: (Clock = 3.8)

Arrival time = 3.8:

Event list: A = 2.1, D = 2.4, P = 1.8Statistical counters: Number delayed = 1 Total delay = 0 Area under Q(t) = 0 Area under B(t) = 1.2 (= (1.6 - 0.4) × 1)

Event list: $A = 2.1, D = 2.4, P = \infty$ Statistical counters: Number delayed = 1 Total delay = 0 Area under Q(t) = 0.2 (= (1.8 - 1.6) × 1) Area under B(t) = 1.4 (= 1.2 + (1.8 - 1.6) × 1)

Event list: A = 3.8, D = 2.4, P = 2.3Statistical counters: Number delayed = 1 Total delay = 0 Area under Q(t) = 0.2 Area under B(t) = 1.7 (= 1.4 + (2.1 - 1.8) × 1)

Event list: A = 3.8, D = 2.4, P = ∞ Statistical counters: Number delayed = 1 Total delay = 0 Area under Q(t) = 0.2 + (2.3 - 2.1) × 1 = 0.4 Area under B(t) = 1.7 + (2.3 - 2.1) × 1 = 1.9

Event list: $A = 3.8, D = \infty, P = \infty$ Statistical counters: Number delayed = 1 Total delay = 0 Area under Q(t) = 0.4 Area under B(t) = 1.9 + (2.4 - 2.3) × 1 = 2.0

Event list:

System: 3.8 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 3.8

Event 8: (Clock = 4.0)

Arrival time = 4.0: System: 3.8 (in server), 4.0 (in queue) System state: Server status = 1 Number in Queue = 1 Time of arrival = 4.0 Time of last event = 4.0

Event 9: (Clock = 4.2)

Premature departure time = 4.2: System: 3.8 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 4.2

Event 10: (Clock = 4.9)

Departure time = 4.9: System: idle System state: Server status = 0 Number in Queue = 0 Time of arrival = (None) Time of last event = 4.9

Event 11: (Clock = 5.6)

Arrival time = 5.6: System: 5.6 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 5.6

Event 12: (Clock = 5.8) Arrival time = 5.8: System: 5.6 (in server), 5.8 (in queue) System state:

A = 4.0, D = 4.9, P = ∞ Statistical counters: Number delayed = 2 Total delay = 0 Area under Q(t) = 0.4 Area under B(t) = 2.0

Event list: A = 5.6, D = 4.9, P = 4.2Statistical counters: Number delayed = 2 Total delay = 0 Area under Q(t) = 0.4 Area under B(t) = 2.0 + (4.0 - 3.8) × 1 = 2.2

Event list: A = 5.6, D = 4.9, P = ∞ Statistical counters: Number delayed = 2 Total delay = 0 Area under Q(t) = 0.4 + (4.2 - 4.0) × 1 = 0.6 Area under B(t) = 2.2 + (4.2 - 4.0) × 1 = 2.4

Event list: $A = 5.6, D = \infty, P = \infty$ Statistical counters: Number delayed = 2 Total delay = 0 Area under Q(t) = 0.6 Area under B(t) = 2.4 + (4.9 - 4.2) × 1 = 3.1

Event list: A = 5.8, D = 9.2, $P = \infty$ Statistical counters: Number delayed = 3 Total delay = 0 Area under Q(t) = 0.6 Area under B(t) = 3.1

Event list: A = 7.2, D = 9.2, P = 6.0 Statistical counters: Server status = 1 Number in Queue = 1 Time of arrival = 5.8 Time of last event = 5.8

Event 13: (Clock = 6.0)

Premature departure time = 6.0: System: 5.6 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 6.0

Event 14: (Clock = 7.2)

Arrival time = 7.2: System: 5.6 (in server), 7.2 (in queue) System state: Server status = 1 Number in Queue = 1 Time of arrival = 7.2 Time of last event = 7.2

Event 15: (Clock = 7.4)

Premature departure time = 7.4: System: 5.6 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 7.4

The following event is optional.

Event 16: (Clock = 9.0)

Simulation end time = 9.0: System: 5.6 (in server) System state: Server status = 1 Number in Queue = 0 Time of arrival = (None) Time of last event = 9.0 Number delayed = 3 Total delay = 0 Area under Q(t) = 0.6Area under B(t) = $3.1 + (5.8 - 5.6) \times 1 = 3.3$

Event list: $A = 7.2, D = 9.2, P = \infty$ Statistical counters: Number delayed = 3 Total delay = 0 Area under Q(t) = 0.6 + (6.0 - 5.8) × 1 = 0.8 Area under B(t) = 3.3 + (6.0 - 5.8) × 1 = 3.5

Event list: A = 9.1, D = 9.2, P = 7.4Statistical counters: Number delayed = 3 Total delay = 0 Area under Q(t) = 0.8 Area under B(t) = 3.5 + (7.2 - 6.0) × 1 = 4.7

Event list: $A = 9.1, D = 9.2, P = \infty$ Statistical counters: Number delayed = 3 Total delay = 0 Area under Q(t) = $0.8 + (7.4 - 7.2) \times 1 = 1.0$ Area under B(t) = $4.7 + (7.4 - 7.2) \times 1 = 4.9$

Event list: $A = 9.1, D = 9.2, P = \infty$ Statistical counters: Number delayed = 3 Total delay = 0 Area under Q(t) = 1.0 Area under B(t) = 4.9 + (9.0 - 7.4) × 1 = 6.5