
CSCI	410:	Modeling	and	Simulation	

Programming	Assignment	1	
Due	September	30th,	23:59:59PM.	

	

Write	the	following	library	functions	in	C	language	for	list	management	tasks.	All	lists	should	be	double-
linked	lists	and	all	list	elements	must	be	stored	in	a	pre-allocated	memory	block,	as	we	discussed	in	class	
on	September	8th.	You	may	define	your	own	variables	to	help	the	managements.	Define	a	macro	of	
integer	value	128	and	use	it	in	your	program	for	element	data	size.	

	
1. Create	a	list	repository	

	
Function	prototype:	

void	*	CreateListRepo	(unsigned	int	max_element_num);	
Parameter:	

max_element_num:	Maximum	number	of	elements	to	be	stored	in	the	repository	
Return:	

The	pointer	as	void	type	to	the	repository.	If	memory	allocation	failed,	return	NULL.	
Call	example:	

void * repo = CreateListRepo (100);
if (repo == NULL) exit(1);

	
2. Destroy	a	list	repository	

	
Function	prototype:	

int	DestroyListRepo	(void	*	repo);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
Return:	

Return	1	for	success,	0	for	failure.	
Call	example:	

if (! DestroyListRepo (repo)) {
 printf ("Failed to delete list repository.\n");
}

	
3. Create	a	list	in	the	repository	

	
Function	prototype:	

int	CreateList	(void	*	repo,	int	*tail);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
tail:	Value	not	used	for	calling.	Upon	return,	it	should	point	to	the	tail	index	of	the	new	list.	

Return:	
Head	index	of	the	new	list.	If	there	is	no	space	in	the	repository,	return	-1.	

Call	example:	
int tail;
int head = CreateList (repo, &tail);
/*
 At this point tail has the index of the list tail element.
 */
if (head < 0) {
 printf ("Failed to create a list.\n");
}

	
	

4. Delete	a	list	in	the	repository	
	
Function	prototype:	

int	DeleteList	(void	*	repo,	int	head);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
head:	Head	index	of	the	list	to	be	deleted.	

Return:	
Return	1	for	success,	0	for	failure.	

Call	example:	
if (! DeleteList (repo, head)) {
 printf ("Failed to delete list.\n");
}

	
5. Insert	an	element	to	the	list	

	
Function	prototype:	

int	InsertElement	(void	*repo,	int	*	head,	int	*	tail,	void	*	element_ptr,	int	n);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
head:	Pointer	of	the	head	index	of	the	list.	
tail:	Pointer	of	the	tail	index	of	the	list.	
element_ptr:	Pointer	of	void	type	to	the	element	that	needs	to	be	inserted	into	the	list	
n:	If	n	<	0,	insert	the	element	as	the	(-n)-th	last	one	in	the	list;	if	option	≥	0,	insert	the	

element	as	the	(n	+	1)-th	element	in	the	list.	
Return:	

Return	1	for	success,	0	for	failure.	
If	necessary,	the	head	and	tail	index	of	the	list	should	be	updated	through	the	'head'	and	
'tail'	parameter.	

Call	example:	
char element[128];

if (! InsertElement (repo, &head, &tail, (void *) element, 0))
{
 printf ("Failed to insert element to the beginning.\n");
}
else {
 /* At this point 'head' should have been updated. */
}
if (! InsertElement (repo, &head, &tail, (void *) element, -
1)) {
 printf ("Failed to add element to the end.\n");
}
else {
 /* At this point 'tail' should have been updated. */
}

	
6. Retrieve	an	element	from	the	list	

	
Function	prototype:	

void	*	RetrieveElement	(void	*	repo,	int	head,	int	tail,	int	n);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
head:	Head	index	of	the	list.	
tail:	Tail	index	of	the	list.	
n:	If	n	<	0,	retrieve	the	(-n)-th	last	element	in	the	list;	if	n	≥	0,	retrieve	the	(n+1)-th	element.	

Return:	
Return	the	pointer	of	void	type	to	the	specified	element	in	the	list.	If	the	element	does	not	
exist,	return	NULL.	

Call	example:	
char element[128];
/* Retrieve the first element */
element_ptr = RetrieveElement (repo, head, tail, 0);
if (element_ptr != NULL) {
 /* Copy the element data to keep it */
 memcpy ((void *) element, element_ptr, 128);
}

	
7. Delete	an	element	from	the	list	

	
Function	prototype:	

int	DeleteElement	(void	*	repo,	int	*	head,	int	*	tail,	int	n);	
Parameter:	

repo:	The	pointer	of	void	type	to	the	repository.	
head:	Pointer	of	the	head	index	of	the	list.	
tail:	Pointer	of	the	tail	index	of	the	list.	
n:	If	n	is	<	0,	delete	the	(-n)-th	last	element	in	the	list;	if	n	≥	0,	remove	the	(n+1)-th	
element.	

Return:	
Return	1	for	success,	0	for	failure.	
If	necessary,	the	head	and	tail	index	of	the	list	should	be	updated	through	the	'head'	and	
'tail'	parameter.	

Call	example:	
if (! DeleteElement (repo, &head, &tail, 0)) {
 printf ("Failed to delete the first element.\n");
}
else {
 /* At this point 'head' should have been updated. */
}
if (! DeleteElement (repo, &head, &tail, -1)) {
 printf ("Failed to delete the last element.\n");
}
else {
 /* At this point 'tail' should have been updated. */
}

	

Extra	credit	work:	

Develop	test	programs	and	earn	no	less	than	30%	of	extra	credit.	If	multiple	students	volunteer,	the	
extra	credit	will	be	shared.	Please	contact	the	instructor	for	details.	

	

Files	to	submit:	

• A	single	file	of	C	code	that	implements	the	functions,	and	
• A	header	file	for	other	programmers	to	include	in	their	program	in	order	to	use	the	library	

functions.	
	
	

Grading:	

• Grading	will	be	done	by	test	programs.	The	grade	will	be	(Number	of	passed	tests)	/	(Total	
number	of	tests)	×	100.	

