
CSCI 510: Computer Architecture 

Written Assignment 3 
Due November 10, 2016 23:59:59PM 

 

1. (5 pts) Assume a hypothetical GPU with the following characteristics: 

 Clock rate 1.5 GHz 

 Contains 16 SIMD processors, each containing 32 single-precision floating point units 

 Has 100 GB/sec off-chip memory bandwidth 

Without considering memory bandwidth, what is the peak single-precision floating-point 

throughput for this GPU in GLFOP/sec, assuming that all memory latencies can be hidden? Is this 

throughput sustainable given the memory bandwidth limitation? 

Answer: 

The peak single-precision floating-point throughput is 
1.5 × 16 × 32 = 768 GFLOPS/s 

However, assuming each single precision operation requires four-byte two operands and outputs 
one four-byte result, sustaining this throughput (assuming no temporal locality) would require 
memory bandwidth of 

12 bytes/FLOP × 768 GFLOPs/s = 9.216 TB/s 
Since 9.216 TB/s >> 100 GB/s, this throughput is not sustainable, but can still be achieved in short 
bursts when using on-chip cache. 

 

 

2. The following code multiplies two vectors that contain single-precision complex values: 

for (i = 0; i < 400; ++ i) { 

  u[i] = a[i] * b[i] – c[i] * d[i]; 

  v[i] = a[i] * d[i] + c[i] * b[i]; 

} 

Assume that the processor runs at 1GHz and has a maximum vector length of 64. The load/store unit 

has a start-up overhead of 15 cycles; the multiply unit, 8 cycles; and the add/subtract unit, 5 cycles. 

a. (5 pts) What is the arithmetic intensity of this piece of code? Justify your answer. 

b. (10 pts) Convert this loop into VMIPS assembly code using strip mining. 

c. (15 pts) Assuming chaining and a single memory pipeline, how many chimes are required? How 

many clock cycles are required per result value, including start-up overhead? 

d. (15 pts) Now assume chaining and three memory pipelines. If there are no bank conflicts in the 

loop’s accesses, how many clock cycles are required per result, including start-up overhead? 

Answer: 



a. Every single-precision number takes 4 bytes. In each iteration, the code reads 4 × 4 = 16 bytes 

from the main memory (the second access of a[i], b[i], c[i] and d[i] is from the cache) and writes 

2 × 4 = 8 bytes to the main memory, in total 24 bytes. In each iteration, six floating point 

operations are executed. Therefore, the arithmetic intensity is 6 / 24 = 1/4 = 0.25. 

b.  

      li $VL,16              # perform the first 16 ops 

      li $r1,0               # initialize index 

loop: lv $v1,a+$r1           # load a 

      lv $v3,b+$r1           # load b 

      mulvv.s $v5,$v1,$v3    # a*b 

      lv $v2,c+$r1           # load c 

      lv $v4,d+$r1           # load d 

      mulvv.s $v6,$v2,$v4    # c*d 

      subvv.s $v5,$v5,$v6    # a*b - c*d 

      sv $v5,u+$r1           # store u 

      mulvv.s $v5,$v1,$v4    # a*d 

      mulvv.s $v6,$v2,$v3    # c*b 

      addvv.s $v5,$v5,$v6    # a*d + c*b 

      sv $v5,v+$r1           # store v 

      bnez $r1,else          # check if first iteration 

      li $VL, 64             # perform 64 ops for every iteration 

      addi $r1,$r1,#64       # first iteration, increment by 16*4=64 

      j loop                 # guaranteed next iteration 

else: addi $r1,$r1,#256      # not first iteration,  

                             # increment by 64*4 = 256 

skip: blt $r1,1600,loop      # next iteration? 

 

c.  

1) lv                  # load a  

2) lv                  # load b 

3) mulvv.s lv   # a * b, load c 

4) lv mulvv.s   # load d, c * d 

5) subvv.s sv   # a*b – c*d, store u 

6) mulvv.s       # a * d 

7) mulvv.s       # c * b 

8) addvv.s sv   # a * d + c * b, store v 

It takes 400 / 64 × 6 = 7 × 6 = 42 chimes. 

 

In the first iteration,  

The first two chimes take 2 × (15 + 16) = 62 cycles. 

The next six chime takes (8 + 15 + 16) × 2 + (5 + 15 + 16) + (8 + 16) × 2 + (5 + 15 + 16) = 196 

cycles. 

In other iterations, 

The first two chimes take 2 × (15 + 64) = 158 cycles. 



The next six chime takes (8 + 15 + 64) × 2 + (5 + 15 + 64) + (8 + 64) × 2 + (5 + 15 + 64) = 486 

cycles. 

 

The total number of cycles taken is 62 + 196 + 400/64 × 486 = 3174 cycles. 

The number of cycles per result = 3174 / 400 = 7.935 cycles. 

 

d.  

 Part 1: For the first iteration: 

1) lv, lv, mulvv.s lv   # load a and b, a * b, load c 

2) lv mulvv.s   # load d, c * d 

3) subvv.s sv   # a*b – c*d, store u 

4) mulvv.s       # a * d 

5) mulvv.s       # c * b 

 Part 2: For all but the last iteration: 

1) addvv.s sv, lv, lv # a * d + c * b, store v, load a and b 

 Part 3: For all but the first iteration: 

2) mulvv.s lv, lv   # a * b, load c and d 

3) mulvv.s            # c * d 

4) subvv.s sv        # a*b – c*d, store u 

5) mulvv.s            # a * d 

6) mulvv.s            # c * b 

 Part 4: For the last iteration: 

7) addvv.s sv       # a * d + c * b, store v 

 

It takes 400 / 64 × 6 = 7 × 6 = 42 chimes. 

 

In part 1,  

The first chime takes   15 + 8 + 15 + 16 = 54 cycles. 

The second chime takes   15 + 8 + 16 = 39 cycles. 

The third chime takes   8 + 15 + 16 = 39 cycles. 

The fourth and fifth chime take 2 × (8 + 16) = 48 cycles 

In part 2, 

The chime takes 8 + 15 + 64 = 87 cycles. 

In part 3, 

The first chime takes 8 + 15 + 64 = 87 cycles. 

The second chime takes 8 + 64 = 72 cycles 

The third chime takes 8 + 15 + 64 = 87 cycles. 

The fourth and fifth chime take 2 × (8 + 64) = 144 cycles 

In part 4, 

The chime takes 8 + 15 + 64 = 87 cycles. 

 

400/64 = 7 



The total number of cycles taken is 54 + 39 + 39 + 48 + 87 * 6 + (87 + 72 + 87 + 144) * 6 + 87 = 

3129 cycles. 

The number of cycles per result = 3129 / 400 = 7.8225 cycles. 

 

3. (7 pts) Convert the loop in Problem 2 into MIPS SIMD. (Refer to the example on page 284 ~ 285 on 

the textbook.) 

Answer: 

      LA     R1, a         ; load base address of a 

      LA     R2, b         ; load base address of b 

      LA     R3, c         ; load base address of c 

      LA     R4, d         ; load base address of d 

      LA     R5, u         ; load base address of u 

LA     R6, v         ; load base address of v 

DADDIU R7, R1, #1600 

LOOP: L.4S   F0, 0(R1)     ; load a[i]..a[i+3] 

L.4S   F4, 0(R2)     ; load b[i]..b[i+3] 

MUL.4S F16, F4, F0   ; a * b 

L.4S   F8, 0(R3)     ; load c[i]..c[i+3] 

L.4S   F12, 0(R4)    ; load d[i]..d[i+3] 

MUL.4S F20, F12, F8  ; c * d 

SUB.4S F20, F20, F16 ; a * b - c * d 

S.4S   F4, 0(R5)     ; store u[i]..u[i+3] 

MUL.4S F16, F12, F0  ; a * d 

MUL.4S F20, F8, F4   ; c * b 

ADD.4S F20, F20, F16 ; a * d + c * b 

S.4S   F20, 0(R6)    ; store v[i]..v[i+3] 

DADDIU R1, R1, #16 

DADDIU R2, R2, #16 

DADDIU R3, R3, #16 

DADDIU R4, R4, #16 

DADDIU R5, R5, #16 

DADDIU R6, R6, #16 

DSUBU  R8, R7, R1 

BNEZ   R8, LOOP 

 

4. (7 pts) Convert the loop in Problem 2 into CUDA.  

Answer: 

// Invoke remi() with 64 threads per Thread Block 

__host__ 

int nblocks = (400 + 63) / 64; 

remi<<<nblocks, 64>>>(400, a, b, u, c, d, v); 

// remi in CUDA 

__device__ 

void remi(int n, double *a, double *b, double *u, 

          double *c, double *d, double *v) 



{ 

  int i = blockIdx.x*blockDim.x + threadIdx.x; 

  if (i < n) { 

    u[i] = a[i] * b[i] – c[i] * d[i]; 

    v[i] = a[i] * d[i] + c[i] * b[i]; 

  } 

} 

 

5. A reduction is a special type of a loop recurrence. An example is shown below: 

dot=0.0; 

for (i = 0; i < 64; ++ i)  

  dot = dot + a[i] * b[i]; 

A vectorizing compiler might apply a transformation called scalar expansion, which expands dot into 

a vector and splits the loop such that the multiply can be performed with a vector operation, leaving 

the reduction as a separate scalar operation: 

for (i = 0; i < 64; ++ i) 

  dot[i] = a[i] * b[i]; 

for (i = 0; i < 64; ++ i) 

  dot[0] = dot[0] + dot[i]; 

As mentioned in Section 4.5, if we allow the floating-point addition to be associative, there are 

several techniques available for parallelizing the reduction. 

a. (7 pts) One technique is called recurrence doubling, which adds sequences of progressively 

shorter vectors (i.e., two 32-element vectors, then two 16-element vectors, and so on). Show 

how the C code would look for executing the second loop in this way. 

b. (7 pts) In some vector processors, the individual elements within the vector registers are 

addressable. In this case, the operands to a vector operation may be two different parts of the 

same vector register. This allows another solution for the reduction called partial sums. The idea 

is to reduce the vector to m sums where m is the total latency through the vector functional 

unit, including the operand read and write times. Assume that the VMIPS vector registers are 

addressable (e.g., you can initiate a vector operation with the operand V1(16), indicating that 

the input operand begins with element 16). Also, assume that the total latency for adds, 

including the operand read and result write, is eight cycles. Write a VMIPS code sequence that 

reduces the contents of V1 to eight partial sums. 

c. (7 pts) When performing a reduction on a GPU, one thread is associated with each element in 

the input vector. The first step is for each thread to write its corresponding value into shared 

memory. Next, each thread enters a loop that adds each pair of input values. This reduces the 

number of elements by half after each iteration, meaning that the number of active threads also 

reduces by half after each iteration. In order to maximize the performance of the reduction, the 

number of fully populated warps should be maximized throughout the course of the loop. In 

other words, the active threads should be contiguous. Also, each thread should index the shared 



array in such a way as to avoid bank conflicts in the shared memory. The following loop violates 

only the first of these guidelines and also uses the modulo operator which is very expensive for 

GPUs: 

unsigned int tid = threadIdx.x; 

for (unsigned int s=1; s < blockDim.x; s *= 2) { 

  if ((tid % (2*s)) == 0) { 

    sdata[tid] += sdata[tid + s]; 

  } 

  __syncthreads(); 

} 

Rewrite the loop to meet these guidelines and eliminate the use of the modulo operator. 

Assume that there are 32 threads per warp and a bank conflict occurs whenever two or more 

threads from the same warp reference an index whose modulo by 32 are equal. 

Answer: 

a.  

for (k = 32; k > 0; k /= 2) { 

  for (i = 0; i < k; ++ i) { 

    dot[i] = dot[i] + dot[i + k]; 

  } 

} 

 

b.  

li $VL,4 

addvv.s $v0(0),$v0(4) 

addvv.s $v0(8),$v0(12) 

addvv.s $v0(16),$v0(20) 

addvv.s $v0(24),$v0(28) 

addvv.s $v0(32),$v0(36) 

addvv.s $v0(40),$v0(44) 

addvv.s $v0(48),$v0(52) 

addvv.s $v0(56),$v0(60) 

 

c.  

for (unsigned int s= blockDim.x/2;s>0;s/=2) { 

  if (tid<s) sdata[tid]=sdata[tid]+sdata[tid+s]; 

  __syncthreads(); 

} 

 

 



6. In this exercise, we will examine several loops and analyze their potential for parallelization. 

a. (5 pts) Does the following loop have a loop-carried dependency? 

for (i = 0; i < 100; ++ i) { 

  A[i] = B[2*i+4]; 

  B[4*i+5] = A[i]; 

} 

b. (8 pts) In the following loop, find all the true dependences, output dependences, and 

antidependences. Eliminate the output dependences and antidependences by renaming. 

for (i = 0; i < 100; ++ i) { 

  A[i] = A[i] * B[i]; /* S1 */ 

  B[i] = A[i] + c; /* S2 */ 

  A[i] = C[i] * c; /* S3 */ 

  C[i] = D[i] * A[i]; /* S4 */ 

} 

c. (5 pts) Consider the following loop: 

for (i = 0; i < 100; ++ i) { 

  A[i] = A[i] + B[i]; /* S1 */ 

  B[i+1] = C[i] + D[i]; /* S2 */ 

} 

Are there dependences between S1 and S2? Is this loop parallel? If not, show how to make it 

parallel. 

Answer: 

a.  

To check whether or not loop-carried dependency exists between B[2*i+4] and B[4*i+5], we use 

the GCD test. A dependency exists if GCD (2,4) divides 5 – 4. As GCD(2,4) = 2, and (5 – 4) mod 2 = 

1, i.e. GCD(2,4) does not divide 5 – 4. Therefore, no loop-carried dependency exists for B[]. 

 

The same index for A[] is used in the loop body. Therefore, no loop-carried dependency exists 

for A[] either. 

 

b.  

True dependencies: 

 S1 and S2 through A[i] 

 S3 and S4 through A[i] 

Output dependencies: 

S1 and S3 through A[i] 



Anti-dependencies 

S1 and S2 through B[i] 

S2 and S3 through A[i] 

S3 and S4 through C[i] 

Re-written code: 
/* Assume A1,B1,C1 are copies of A,B,C */ 

for (i=0;i<100;i++) { 

X[i] = A1[i] * B1[i]; /* S1 */ 

B[i] = X[i] + c; /* S2 */ 

  A[i] = C1[i] * c; /* S3 */ 

  C[i] = D[i] * A[i]; /* S4 */ 

} 

 

 

c.  

There is an anti-dependence between iteration i and i+1 for array B 

Re-written code: 

 A[0] = A[0] + B[0]; 

 for (i=0; i<99; i=i+1) { 

   B[i+1] = C[i] + D[i]; 

   A[i+1] = A[i+1] + B[i+1]; 

 } 

 B[100] = C[99] + D[99]; 

 


